




NG OUT W 

Tony Gsaddls 
Haywood Community College 

Boston San Francisco NewYork 

London Toronto Sydney Tokyo Singapore Madrid 
Mexico City Munich Paris CapeTown Hong Kong Montreal 



Executive Editor 
Editorial Assistant 
Associate Managing Ed~tor 
Text Designer 
Cover Designer 
Photo Research 
Digital Assets Manager 
Senior Media Producer 
Marketing Manager 
Senior Author Support/ 

Technology Specialist 
Senior Manufacturing Buyer 
Senior Media Buyer 
Production Coordination 
Composition and Illustrations 
Indexing 

Michael Hirsch 
Stephanie Sellinger 
Jeffrey Holcomb 
Joyce Cosentino Wells 
Beth Paquin 
Beth Anderson 
Marianne Groth 
Bethany Tidd 
Erin Davis 

Joe Vetere 
Carol Melville 
Ginny Michaud 
Shelley Creager, Aptara Corp. 
Aptara Corp. 
Steve Rath 

Photo Credits 
Cover image 0 Getty Images / Image Source Pink 
Figure 1-3, "The ENIAC computer," (page 4) is courtesy of U.S. Army Historic Computer Images. 
Figure 1-4, "A lab technician holds a modern microprocessor," (page 4) is courtesy of Intel Corporation. 
Figure 1-5, "Memory chips," (page 5) is courtesy of IBM Corporation. 
Rendered art and photographic images in Figures 1-2 (page 3), 1-15 (page 12), 1-16 and 1-17 (page IS), 

and 1-19 and 1-20 (page 19) 0 2007 JUPITERLMAGES and its licensors. All Rights Reserved. 

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade- 
marks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the 
designations have been printed in initial caps or all caps. 

Library of Congress Cataloging-in-Publication Data 

Gaddis, Tony. 
Starting out with Python / Tony Gaddis. 

p. cm. 
Includes index. 
ISBN-13: 978-0-321-53711-9 
ISBN-10: 0-321-53711-4 
1. Python (Computer program language) I. Title. 

Copyright 0 2009 Pearson Education, Inc. All rights reserved. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, 
recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of 
America. For information on obtaining permission for use of material in this work, please submit a written 
request to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, 
MA 021 16, fax (617) 671-3447, or online at http://www.pearsoned.com/legal/permissions.htm. 



Part I: 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Part 11: 

Chapter 7 

Chapter 8 

Part I l l :  

Chapter 9 

Chapter 10 

Part IV: 

Chapter 11 

Chapter 12 

Appendix A 

Appendix B 

Appendix C 

Student CD 

Appendix D 

Preface x i  

Programming Fundamentals 

lntroduction t o  Computers and Programming 

Input, Processing, and Output 

Simple Functions 

Decision Structures and Boolean Logic 

Repetition Structures 

Value-Returning Functions and Modules 

Using Objects t o  Perform Tasks 

Files and Exceptions 

Working w i t h  Sequences: Strings and Lists 

Object-Oriented Programming 

Classes and Object-Oriented Programming 

Inheritance 

Advanced Topics 

Recursion 

GUI Programming 

Installing Python 

lntroduction t o  IDLE 

The ASCII Character Set 

Index 

The following appendix is on the accompanying Student CD. 

Answers t o  Checkpoints 





Preface xi 

Part I: Programming Fundamentals 

Chapter 1 Introduction to Computers and Programming 

1.1 Introduction 
1.2 Hardware and Software 
1.3 How Computers Store Data 
1.4 How a Program Works 
1.5 Using Python 

Chapter 2 Input, Processing, and Output 

2.1 Designing a Program 
2.2 Input, Processing, and Output 
2.3 Displaying Output with the print Statement 
2.4 Comments 
2.5 Variables 
2.6 Reading Input from the Keyboard 
2.7 Performing Calculations 
2.8 More About Data Output 

chapter 3 Simple Functions 

3.1 Introduction to Functions 
3.2 Defining and Calling a Function 
3.3 Designing a Program to Use Functions 
3.4 Local Variables 
3.5 Passing Arguments to Functions 
3.6 Global Variables and Global Constants 

Chapter 4 Decision Structures and Boolean Logic 

4.1 The if Statement 
4.2 The i f  -else Statement 
4.3 Comparing Strings 
4.4 Nested Decision Structures and the if -e l i f  -else Statement 
4.5 Logical Operators 
4.6 Boolean Variables 



viii Contents 

Chapter 5 

5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 

Repetition Structures 
Introduction to Repetition Structures 
The w h i l e  Loop: a Condition-Controlled Loop 
The fo r  Loop: a Count-Controlled Loop 
Calculating a Running Total 
Sentinels 
Input Validation Loops 
Nested Loops 

Chapter 6 

6.1 

Value-Returning Functions and Modules 

Introduction to Value-Returning Functions: 
Generating Random Numbers 
Writing Your Own Functions 
The math Module 
Storing Functions in Modules 

Part I I :  Using Objects to Perform Tasks 

Chapter 7 Files and Exceptions 

Introduction to File Input and Output 
Using Loops to Process Files 
Processing Records 
Exceptions 

Chapter 8 

8.1 
8.2 
8.3 

Working with Sequences: Strings and Lists 

Sequences 
Working with Strings 
Lists 

Part I l l :  Object-Oriented Programming 

Chapter 9 

9.1 
9.2 
9.3 
9.4 

Classes and Object-Oriented Programming 

Procedural and Object-Oriented Programming 
Classes 
Working with Instances 
Techniques for Designing Classes 

Chapter 10 

10.1 
10.2 

Inheritance 
Introduction to Inheritance 
Polymorphism 

Part IV: Advanced Topics 

Chapter 11 

11.1 
11.2 
11.3 

Recursion 
Introduction to Recursion 
Problem Solving with Recursion 
Examples of Recursive Algorithms 



Contents ix 

Chapter 12 GUI Programming 

Graphical User Interfaces 
Using the T k i n t e r  Module 
Display Text with Labe l  Widgets 
Organizing Widgets with Frames 
But ton  Widgets and Info Dialog Boxes 
Getting Input with the E n t r y  Widget 
Using Labels as Output Fields 
Radio Buttons and Check Buttons 

Appendix A Installing Python 

Appendix B introduction to IDLE 

Appendix C The ASCII Character Set 

Index 

Student CD The following appendix is on the accompanying Student CD. 
Appendix D Answers to Checkpoints 





Welcome to Starting Out with Python. This book uses the Python language to teach pro- 
gramming concepts and problem-solving skills, without assuming any previous program- 
ming experience. With easy-to-understand examples, pseudocode, flowcharts, and other 
tools, the student learns how to design the logic of programs and then implement those 
programs using Python. This book is ideal for an introductory programming course or a 
programming logic and design course using Python as the language. 

As with all the boolts in the Starting Out With series, the hallmark of this text is its clear, 
friendly, and easy-to-understand writing. In addition, it is rich in example programs that 
are concise and practical. The programs in this book include short examples that highlight 
specific programming topics, as well as more involved examples that focus on problem 
solving. Each chapter provides one or more case studies that provide step-by-step analysis 
of a specific problem and shows the student how to solve it. 

C s n t r ~ ~ . !  Structures First, Then Ciasscs 
Python is a fully object-oriented programming language, but students do not have to understand 
object-oriented concepts to start programming in Python. This text first introduces the student 
to the fundamentals of data storage, input and output, control structures, functions, sequences 
and lists, file 110, and objects that are created from standard library classes. Then the student 
learns to write classes, explores the topics of inheritance and polymorphism, and learns to write 
recursive functions. Finally, the student learns to develop simple event-driven GUI applications. 

Brief Ovewlew sf Each Chapter 

Chapter 1: Introduction to Computers and Programming 

This chapter begins by giving a very concrete and easy-to-understand explanation of how 
computers work, how data is stored and manipulated, and why we write programs in high- 
level languages. An introduction to Python, interactive mode, script mode, and the IDLE 
environment is also given. 

Chapter 2: Input, Processing, and Output 

This chapter introduces the program development cycle, variables, data types, and simple 
programs that are written as sequence structures. The student learns to write simple programs 



xii Preface 

that read input from the keyboard, perform mathematical operations, and produce screen 
output. Pseudocode and flowcharts are also introduced as tools for designing programs. 

Chapter 3: Simple Functions 

This chapter shows the benefits of modularizing programs and using the top-down design 
approach. The student learns to define and call simple functions (functions that do not 
return values), pass arguments to functions, and use local variables. Hierarchy charts are 
introduced as a design tool. 

Chapter 4: Decision Structures and Boolean Logic 

In this chapter the student learns about relational operators and Boolean expressions and 
is shown how to control the flow of a program with decision structures. The i f ,  i f  -else, 
and i f  - e l i f - e l s e  statements are covered. Nested decision structures and logical opera- 
tors are also discussed. 

Chapter 5: Repetition Structures 

This chapter shows the student how to create repetition structures using the w h i l e  loop 
and f o r  loop. Counters, accumulators, running totals, and sentinels are discussed, as well 
as techniques for writing input validation loops. 

Chapter 6: Value-Returning Functions and Modules 

This chapter begins by discussing common library functions, such as those for generating 
random numbers. After learning how to call library functions and use their return value, 
the student learns to define and call his or her own functions. Then the student learns how 
to use modules to organize functions. 

Chapter 7: Files and Exceptions 

This chapter introduces sequential file input and output.   he student learns to read and 
write large sets of data and store data as fields and records. The chapter concludes by dis- 
cussing exceptions and shows the student how to write exception-handling code. 

Chapter 8: Working with Sequences: Strings and Lists 

This chapter introduces the student to the concept of a sequence in Python and explores the 
use of two common Python sequences: strings and lists. Several programming techniques 
are shown using strings with operators, built-in functions, library functions, and string 
methods. The student also learns to use lists for array-like processing. 

Chapter 9: Classes and Object-Oriented Programming 

This chapter compares procedural and object-oriented programming practices. It covers the 
fundamental concepts of classes and objects. Attributes, methods, encapsulation and data 
hiding, -- i n i t  functions (which are similar to constructors), accessors, and mutators 
are discussed.  hes student learns how to model classes with UML and how to find the 
classes in a particular problem. 



Preface xiii 

Chapter 10: Inheritance 

The study of classes continues in this chapter with the subjects of inheritance and polymor- 
phism. The topics covered include superclasses, subclasses, how -- i n i t  -- functions 
work in inheritance, method overriding, and polymorphism. 

Chapter 11: Recursion 

This chapter discusses recursion and its use in problem solving. A visual trace of recursive 
calls is provided and recursive applications are discussed. Recursive algorithms for many 
tasks are presented, such as finding factorials, finding a greatest common denominator 
(GCD), and summing a range of values in a list, and the classic Towers of Hanoi example 
are presented. 

Chapter 12: GUI Programming 

This chapter discusses the basic aspects of designing a GUT application using the Tk in te r  
module in Python. Fundamental widgets, such as labels, button, entry fields, radio buttons, 
check buttons, and dialog boxes, are covered. The student also learns how events work in 
a GUI application and how to write callback functions to handle events. 

Appendix A: Installing Python 

This appendix explains how to install the Python interpreter from the accompanying CD 
or download it from the Python Web site. 

Appendix B: Introduction to lDLE 

This appendix gives an overview of the IDLE integrated development environment that 
comes with Python. 

Appendix C: The ASCII Character Set 

As a reference, this appendix lists the ASCII character set. 

Appendix D: Answers to Checkpoint Questions 

This appendix gives the answers to the Checkpoint questions that appear throughout the text. 

The text teaches programming in a step-by-step manner. Each chapter covers a major set of 
topics and builds knowledge as students progress through the book. Although the chapters 
can be easily taught in their existing sequence, you do have some flexibility in the order that 
you wish to cover them. Figure P-1 shows chapter dependencies. Each box represents a 
chapter or a group of chapters. An arrow points from a chapter to the chapter that must 
be covered before it. 



xiv Preface 

Figure P-1 Chapter dependencies 

Chapters 1-6 
(Cover in Order) 

orking with Sequence Classes and Object- 

Chapter 10 Chapter 12 
Inheritance GUI Programming 

Features of f he Text 

Concept Each major section of the text starts with a concept statement. 
Statements This statement concisely summarizes the main point of the section. 

Example Programs Each chapter has an abundant number of complete and partial 
example programs, each designed to highlight the current topic. 

In the Spotlight Each chapter has one or more In the Spotlight case studies that 
Case Studies provide detailed, step-by-step analysis of problems and show the 

student how to solve them. 

Notes 

Tips 

Notes appear at several places throughout the text. They are 
short explanations of interesting or often misunderstood points 
relevant to the topic at hand. 

Tips advise the student on the best techniques for approaching 
different programming problems. 

Warnings Warnings caution students about programming techniques or 
practices that can lead to malfunctioning programs or lost data. 

Checkpoints Checkpoints are questions placed at intervals throughout each 
chapter. They are designed to query the student's knowledge 
quickly after learning a new topic. 

Review Questions Each chapter diverse set of review 

Programming 
Exercises 



Preface xv 

Supplements 

Student Resource CD 

This CD includes: 

The Python Interpreter, including the IDLE programming environment 

All of the book's example programs 

Appendix D: Answers to Checkpoint Questions 

If a CD did not come with your book or you can't locate your CD, visit h t t p  : / /www. aw. 
com/cssuppor t /  to access most of these items. 

instructor Resources 

The following supplements are available to qualified instructors only: 

Answers to all of the Review Questions 

Solutions for the exercises 

PowerPoint presentation slides for each chapter 

* Test bank 

Visit the Addison-Wesley Instructor Resource Center (www . a w  . c o m / i r c )  or send an email 
to computing@aw. com for information on how to access them. 

Acknowledgments 
I want to thank everyone at Addison-Wesley for making the Starting Out With series so 
successful. I am extremely grateful to Michael Hirsch, executive editor, and Stephanie 
Sellinger, editorial assistant, for guiding me through the process of writing this book. I also 
want to thank Erin Davis for all of her work as marketing manager. I had a great produc- 
tion team for this book, led by Jeff Holcomb and including Shelley Creager, Brian Baker, 
David Lindsay (copyeditor), Joyce Cosentino Wells (text design), Beth Paquin (cover 
design), Bethany Tidd (media), Carol Melville (manufacturing), and Marianne Groth (sup- 
plements). Thanks to you all! 

Last, but not least, I want to thank my family for all the patience, love, and support they 
have shown me throughout this and my many other projects. 

About f he Auf har 
Tony Gaddis is the principal author of the Starting Out With series of Gxtbooks. Tony has 
nearly two decades of experience teaching computer science courses, primarily at Haywood 
Community College. He is a highly acclaimed instructor who was previously selected as the 
North Carolina Community College "Teacher of the Year" and has received the Teaching 
Excellence award from the National Institute for Staff and Organizational Development. 
The Starting Out With series includes introductory books covering C++, JavaTM, Microsoft@ 
Visual BasicB, Microsoft@ C#@, PythonB, and Alice, all published by Addison-Wesley. More 
information about all these books can be found at www. gaddisbooks  .corn. 





j 1.1 Introduction 
i 1.2 Hardware and Software 1 1.3 How Computers Store Data 

1.4 How a Program Works 
1.5 Using Python 

Introduction 
Think about some of the different ways that people use computers. In school, students use com- - - 

puters for tasks such as writing papers, searching for articles, sending email, and participating in 
online classes. At work, people use computers to analyze data, make presentations, conduct busi- 
ness transactions, communicate with customers and coworkers, control machines in manufac- 
turing facilities, and do many other things. At home, people use computers for tasks such as pay- 
ing bills, shopping online, communicating with friends and family, and playing computer games. 
And don't forget that cell phones, iPodsO, BlackBerriesB, car navigation systems, and many 
other devices are computers too, The uses of computers are almost limitless in our everyday lives. 

Computers can do such a wide variety of things because they can be programmed. This means 
that computers are not designed to do just one job, but to do any job that their programs tell 
them to do. A program is a set of instructions that a computer follows to perform a task. For 
example, Figure 1-1 shows screens from two commonly used programs, Microsoft Word and 
Adobe Photoshop. Microsoft Word is a word processing program that allows you to create, 
edit, and print documents with your computer. Adobe Photoshop is an image editing program 
that allows you to work with graphic images, such as photos taken with your digital camera. 

Programs are commonly referred to as software. Software is essential to a computer because 
it controls everything the computer does. All of the software that we use to make our com- 
puters useful is created by individuals working as programmers or software developers. A 
programmer, or software developer, is a person with the training and skills necessary to 
design, create, and test computer programs. Computer programming is an exciting and 
rewarding career. Today, you will find programmers' work used in business, medicine, gov- 
ernment, law enforcement, agriculture, academics, entertainment, and many other fields. 



2 Chapter 1 Introduction to Computers and Programming 

Figure 1-1 A word processing program and an image editing program 

This book introduces you to the fundamental concepts of computer programming using the 
Python language. Before we begin exploring those concepts, you need to understand a few 
basic things about computers and how they work. This chapter will build a solid founda- 
tion of knowledge that you will continually rely on as you study computer science. First, 
we will discuss the physical components that computers are commonly made of. Next, we 
will look at how computers store data and execute programs. Finally, we will get a quick 
introduction to the software that you will use to write Python programs. 

Hardware and Software 

CONCEPT: The physical devices that a computer is made of are referred to as the 
computer's hardware. The programs that run on a computer are referred 
to as software. 

Hardware 
The term hardware refers to all of the physical devices, or components, that a computer is made 
of. A computer is not one single device, but a system of devices that all work together. Like the 
different instruments in a symphony orchestra, each device in a computer plays its own part. 

If you have ever shopped for a computer, you've probably seen sales literature listing com- 
ponents such as microprocessors, memory, disk drives, video displays, graphics cards, and 
so on. Unless you already know a lot about computers, or at least have a friend that does, 
understanding what these different components do might be challenging. As shown in 
Figure 1-2, a typical computer system consists of the following major components: 

The central processing unit (CPU) 
Main memory 
Secondary storage devices 
Input devices 
Output devices 



1.2 Hardware and Software 3 

Figure 1-2 Typical comoonents of a computer system 

Input 
Devices 

+ 

Output 
Devices 

Let's take a closer look at each of these components. 

The CPU 
When a computer is performing the tasks that a program tells it to do, we say that the com- 
puter is running or executing the program. The central processing unit, or CPU, is the part 
of a computer that actually runs programs. The CPU is the most important component in 
a computer because without it, the computer could not run software. 

In the earliest computers, CPUs were huge devices made of electrical and mechanical 
components such as vacuum tubes and switches. Figure 1-3 shows such a device. 
The two women in the photo are working with the historic ENIAC computer. The 
ENIAC, which is considered by many to be the world's first programmable electronic 
computer, was built in 1345 to calculate artillery ballistic tables for the U.S. Army. This 
machine, which was primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 
30 tons. 

Today, CPUs are small chips known as rnicrop~ocessors. Figure 1-4 shows a photo of a lab 
technician holding a modern microprocessor. In addition to being much smaller than the 
old electromechanical CPUs in early computers, microprocessors are also much more 
powerful. 



4 Chapter 1 Introduction to Computers and Programming 

Figure 1-3 The ENlAC computer (courtesy of U.S. Army Historic Computer Images) 

Figure 1-4 A lab technician holds a modern microprocessor (photo courtesy of Intel 
Corporation) 

You can think of main memory as the computer's work area. This is where the computer 
stores a program while the program is running, as well as the data that the program is 
working with. For example, suppose you are using a word processing program to write an 



1.2 Hardware and Software 5 

essay for one of your classes. While you do this, both the word processing program and the 
essay are stored in main memory. 

Main memory is commonly known as random-access memory, or RAM. It is called this 
because the CPU is able to quickly access data stored at any random location in RAM. 
RAM is usually a volatile type of memory that is used only for temporary storage while 
a program is running. When the computer is turned off, the contents of RAM are 
erased. Inside your computer, RAM is stored in chips, similar to the ones shown in 
Figure 1-5. 

Figure 1-5 Memory chips (photo courtesy of 1BM Corporation) 

Secgsndaeav Storage Devices 
Secondary storage is a type of memory that can hold data for long periods of time, even 
when there is no power to the computer. Programs are normally stored in secondary 
memory and loaded into main memory as needed. Important data, such as word pro- 
cessing documents, payroll data, and inventory records, is saved to secondary storage 
as well. 

The most common type of secondary storage device is the disk drive. A disk drive stores 
data by magnetically encoding it onto a circular disk. Most computers have a disk drive 
mounted inside their case. External disk drives, which connect to one of the computer's 
communication ports, are also available. External disk drives can be used to create backup 
copies of important data or to move data to another computer. 9 

In addition to external disk drives, many types of devices have been created for copying 
data, and for moving it to other computers. For many years floppy disk drives were popu- 
lar. A floppy disk drive records data onto a small floppy disk, which can be removed from 
the drive. Floppy dislts have many disadvantages, however. They hold only a small amount 
of data, are slow to access data, and can be unreliable. The use of floppy disk drives has 
declined dramatically in recent years, in favor of superior devices such as USB drives. USB 
drives are small devices that plug into the computer's USB (universal serial bus) port, and 



Chapter 1 Introduction to Computers and Programming 

appear to the system as a disk drive. These drives do not actually contain a disk, however. 
They store data in a special type of memory known as flash memory. USB drives, which are 
also known as memory sticks and flash drives, are inexpensive, reliable, and small enough 
to be carried in your pocket. 

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also 
popular for data storage. Data is not recorded magnetically on an optical disc, but is encoded 
as a series of pits on the disc surface. CD and DVD drives use a laser to detect the pits and 
thus read the encoded data. Optical discs hold large amounts of data, and because recordable 
CD and DVD drives are now commonplace, they are good mediums for creating backup 
copies of data. 

input Devices 
Input is any data the computer collects from people and from other devices. The compo- 
nent that collects the data and sends it to the computer is called an input device. Common 
input devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk 
drives and optical drives can also be considered input devices because programs and data 
are retrieved from them and loaded into the computer's memory. 

Output Devices 
Output is any data the computer produces for people or for other devices. It might be a 
sales report, a list of names, or a graphic image. The data is sent to an output device, which 
formats and presents it. Common output devices are video displays and printers. Disk 
drives and CD recorders can also be considered output devices because the system sends 
data to them in order to be saved. 

Software 
If a computer is to function, software is not optional. ~ v e f i t h i n ~  that a computer does, 
from the time you turn the power switch on until you shut the system down, is under the 
control of software. There are two general categories of software: system software and 
application software. Most computer programs clearly fit into one of these two categories. 
Let's take a closer look at each. 

System Software 
The programs that control and manage the basic operations of a computer are generally 
referred to as system software. System software typically includes the following types of 
programs: 

Operating Systems An operating system is the most fundamental set of programs on a 
computer. The operating system controls the internal operations of the computer's 
hardware, manages all of the devices connected to the computer, allows data to be saved 
to and retrieved from storage devices, and allows other programs to run on the computer. 
Figure 1-6 shows screens from three popular operating systems: Windows Vista, Mac OS 
X, and Linux. 



1.2 Hardware and Software 

Flqhlase 1-6 Screens From the Windows Vista, Mac 8 s  X, and Fedora Linux operating systems 

Windows Vista Mac OS X 

Fedora Linux 

U t i l i ~  Programs A utility program performs a specialized task that enhances the com- 
puter's operation or safeguards data. Examples of utility programs are virus scanners, 
file compression programs, and data backup programs. 
Software Development Tools Software development tools are the programs that pro- 
grammers use to create, modify, and test software. Assemblers, compilers, and inter- 
preters are examples of programs that fall into this category. 

Programs that make a computer useful for everyday tasks are known as application soft- 
ware. These are the programs that people normally spend most of their time running on 
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two 
commonly used applications: Microsoft Word, a word processing program, and Adobe 
Photoshop, an image editing program. Some other examples of application software are 
spreadsheet programs, enlail programs, web browsers, and game progmms. 

Checkpoint 

1. 1 What is a program? 

1.2 What is hardware? 

1.3 List the five major components of a computer system. 

1.4 What part of the computer actually runs programs? 



8 Chapter 1 Introduction to Computers and Programming 

1.5 What part of the computer serves as a work area to store a program and its data 
while the program is running? 

1.6 What part of the computer holds data for long periods of time, even when there is 
no power to the computer? 

1.7 What part of the computer collects data from people and from other devices? 

1.8 What part of the computer formats and presents data for people or other 
devices? 

1.9 What fundamental set of programs control the internal operations of the 
computer's hardware? 

1.10 What do you call a program that performs a specialized task, such as a virus 
scanner, a file compression program, or a data backup program? 

1.11 Word processing programs, spreadsheet programs, email programs, web browsers, 
and game programs belong to what category of software? 

How Computers Store Data 

i CONCEPT: All data that is stored in a computer is converted to sequences of 0s 
and Is. 

A computer's memory is divided into tiny storage locations known as bytes. One byte is 
only enough memory to store a letter of the alphabet or a small number. In order to do any- 
thing meaningful, a computer has to have lots of bytes. Most computers today have mil- 
lions, or even billions, of bytes of memory. 

Each byte is divided into eight smaller storage locations known as bits. The term bit stands 
for binary digit. Computer scientists usually think of bits as tiny switches that can be either 
on or off. Bits aren't actual "switches," however, at least not in the conventional sense. In 
most computer systems, bits are tiny electrical components that can hold either a positive 
or a negative charge. Computer scientists think of a positive charge as a switch in the on 
position, and a negative charge as a switch in the off position. Figure 1-7 shows the way 
that a computer scientist might think of a byte of memory: as a collection of switches that 
are each flipped to either the on or off position. 

Figure 1-7 Think of a byte as eight switches 



1.3 How Computers Store Data 9 

When a piece of data is stored in a byte, the computer sets the eight bits to an onloff pat- 
tern that represents the data. For example, the pattern shown on the left in Figure 1-8 
shows how the number 77 would be stored in a byte, and the pattern on the right shows 
how the letter A would be stored in a byte. We explain below how these patterns are 
determined. 

Figure 1-8 Bit patterns for the number 77 and the letter A 

The number 77 stored in a byte. The letter A stored in a byte. 

Storing Numbers 
A bit can be used in a very limited way to represent numbers. Depending on whether the 
bit is turned on or off, it can represent one of two different values. In computer systems, a 
bit that is turned off represents the number 0 and a bit that is turned on represents the num- 
ber 1. This corresponds perfectly to the binary numbering system. In the binary numbering 
system (or binary, as it is usually called) all numeric values are written as sequences of 0s 
and Is. Here is an example of a number that is written in binary: 

The position of each digit in a binary number has a value assigned to it. Starting with the 
rightmost digit and moving left, the position values are 2O, 2', 22, 23, and so forth, as shown 
in Figure 1-9. Figure 1-10 shows the same diagram with the position values calculated. 
Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so 
forth. 

Figure '1-9 The values of binary digits as powers of 2 



10 Chapter 1 Introduction to Computers and Programming 

Figure 1-10 The values of binary digits 

To determine the value of a binary number you simply add up the position values of all the 
1s. For example, in the binary number 10011101, the position values of the 1s are 1 ,4 ,  8, 
16, and 128. This is shown in Figure 1-11. The sum of all of these position values is 157. 
So, the value of the binary number 10011101 is 157. 

Figure 1-1 I Determining the value of 1001 1 101 

Figure 1-12 shows how you can picture the number 157 stored in a byte of memory. Each 
1 is represented by a bit in the on position, and each 0 is represented by a bit in the off 
position. 

Figure 1-12 The bit pattern for 157 



1.3 How Computers Store Data 11 

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When 
all of the bits in a byte are set to 1 (turned on), then the byte holds the largest value that 
can be stored in it. The largest value that can be stored in a byte is 1 + 2 + 4 + 8 + 16 + 
32 + 64 + 128 = 255. This limit exists because there are only eight bits in a byte. 

What if you need to store a number larger than 255? The answer is simple: use more than 
one byte. For example, suppose we put two bytes together. That gives us 16 bits. The posi- 
tion values of those 16 bits would be 2O, 2', 2', Z3, and so forth, up through 215. As shown 
in Figure 1-13, the maximum value that can be stored in two bytes is 65,535. If you need 
to store a number iarger than this, then more bytes are necessary. 

Figure 1-13 Two bytes used for a large number 

TIP: In case you're feeling overwhelmed by all this, relax! You will not have to actu- 
ally convert numbers to binary while programming. Knowing that this process is tak- 
ing place inside the computer will help you as you learn, and in the long term this 
knowledge will make you a better programmer. 

Storing Characters 
Any piece of data that is stored in a computer's memory must be stored as a binary num- 
ber. That includes characters, such as letters and punctuation marks. When a character is 
stored in memory, it is first converted to a numeric code. The numeric code is then stored 
in memory as a binary number. 

Over the years, different coding schemes have been developed to represent characters in 
computer memory. Historically, the most important of these coding schemes is ASCII, 
which stands for the American Standard Code for Information Interchange. ASCII is a set 
*of 128 numeric codes that represent the English letters, various punctuation marks, and 
other characters. For example, the ASCII code for the uppercase letter A is 65. When you 
type an uppercase A on your computer keyboard, the number 65 is stored in memory (as a 
binary number, of course). This is shown in Figure 1-14. C; 

Figure 1-14 The letter A is stored in memory as the number 65 



12 Chapter 1 Introduction to Computers and Programming 

TI  P: The acronym ASCII is pronounced "askee." 

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, 
and so forth. Appendix C shows all of the ASCII codes and the characters they represent. 

The ASCII character set was developed in the early 1960s, and was eventually adopted by 
most all computer manufacturers. ASCII is limited however, because it defines codes for 
only 128 characters. To remedy this, the Unicode character set was developed in the early 
1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can also 
represent characters for many of the languages in the world. Today, Unicode is quickly 
becoming the standard character set used in the computer industry. 

Advanced Number Storage 
Earlier you read about numbers and how they are stored in memory. While reading that 
section, perhaps it occurred to you that the binary numbering system can be used to repre- 
sent only integer numbers, beginning with 0. Negative numbers and real numbers (such as 
3.14159) cannot be represented using the simple binary numbering technique we discussed. 

Computers are able to store negative numbers and real numbers in memory, but to do so 
they use encoding schemes along with the binary numbering system. Negative numbers are 
encoded using a technique known as two's complement, and real numbers are encoded in 
floating-point notation. You don't need to know how these encoding schemes work, only 
that they are used to convert negative numbers and real numbers to binary format. 

Other Types of Data 
Computers are often referred to as digital devices. The term digital can be used to describe 
anything that uses binary numbers. Digital data is data that 3s stored in binary, and a digital 
device is any device that works with binary data. In this section we have discussed how 
numbers and characters are stored in binary, but computers also work with many other 
types of digital data. 

For example, consider the pictures that you take with your digital camera. These images 
are composed of tiny dots of color known as pixels. (The term pixel stands for picture 
element.) As shown in Figure 1-15, each pixel in an image is converted to a numeric code 
that represents the pixel's color. The numeric code is stored in memory as a binary number. 

Figure 3-15 A digital image is stored in binary format 



1.4 How a Program Works 13 

The music that you play on your CD player, iPod or MP3 player is also digital. A digital 
song is broken into small pieces known as samples. Each sample is converted to a binary 
number, which can be stored in memory. The more samples that a song is divided into, 
the more it sounds like the original music when it is played back. A CD quality song is 
divided into more than 44,000 samples per second! 

5 Checkpoint 

1.12 What amount of memory is enough to store a letter of the alphabet or a small number? 

1.13 What do you call a tiny "switch" that can be set to either on or off? 

1.14 In what numbering system are all numeric values written as sequences of 0s and Is? 

1.15 What is the purpose of ASCII? 

1.16' What encoding scheme is extensive enough to represent the characters of many of 
the languages in the world? 

1.17 What do the terms "digital data" and "digital device" mean? 

How a Program Works 

l- CONCEPT: A computer's CPU can only understand instructions that are written in 
machine language. Because people find it very difficult to write entire 
programs in machine language, other programming languages have been 
invented. 

Earlier, we stated that the CPU is the most important component in a computer because it 
is the part of the computer that runs programs. Sometimes the CPU is called the "computer's 
brain," and is described as being "smart." Although these are common metaphors, you 
should understand that the CPU is not a brain, and it is not smart. The CPU is an electronic 
device that is designed to do specific things. In particular, the CPU is designed to perform 
operations such as the following: 

Reading a piece of data from main memory 
Adding two numbers 
Subtracting one number from another number 
Multiplying two numbers 
Dividing one number by another number 
Moving a piece of data from one memory location to another 
Determining whether one value is equal to another value 

As you can see from this list, the CPU performs simple operations on fiieces of data. The 
CPU does nothing on its own, however. It has to be told what to do, and that's the purpose 
of a program. A program is nothing more than a list of instructions that cause the CPU to 
perform operations. 

Each instruction in a program is a command that tells the CPU to perform a specific oper- 
ation. Here's an example of an instruction that might appear in a program: 



14 Chapter 1 Introduction to Computers and Programming 

To you and me, this is only a series of 0s and Is. To a CPU, however, this is an instruction 
to perform an 0~erati0n.l It is written in 0s and 1s because CPUs only understand instruc- 
tions that are written in machine language, and machine language instructions always have 
an underlying binary structure. 

A machine language instruction exists for each operation that a CPU is capable of perform- 
ing. For example, there is an instruction for adding numbers, there is an instruction for sub- 
tracting one number from another, and so forth. The entire set of instructions that a CPU 
can execute is known as the CPU's instruction set. 

NOTE: There are several microprocessor companies today that manufacture CPUs. 
Some of the more well-known microprocessor companies are Intel, AMD, and 
Motorola. If you look carefully at your computer, you might find a tag showing a logo 
for its microprocessor. 

Each brand of microprocessor has its own unique instruction set, which is typically 
understood only by microprocessors of the same brand. For example, Intel micro- 
processors understand the same instructions, but they do not understand instructions 
for Motorola microprocessors. 

The machine language instruction that was previously shown is an example of only one 
instruction. It takes a lot more than one instruction, however, for the computer to do 
anything meaningful. Because the operations that a CPU knows how to perform are so 
basic in nature, a meaningful task can be accomplished only if the CPU performs many 
operations. For example, if you want your computer to calculate the amount of inter- 
est that you will earn from your savings account this year, the CPU will have to 
perform a large number of instructions, carried out in the proper sequence. It is not 
unusual for a program to contain thousands or even millions of machine language 
instructions. 

Programs are usually stored on a secondary storage device such as a disk drive. When you 
install a program on your computer, the program is typically copied to your computer's disk 
drive from a CD-ROM, or perhaps downloaded from a website. 

Although a program can be stored on a secondary storage device such as a disk drive, 
it has to be copied into main memory, or RAM, each time the CPU executes it. For 
example, suppose you have a word processing program on your computer's disk. To 
execute the program you use the mouse to double-click the program's icon. This causes 
the program to be copied from the disk into main memory. Then, the computer's CPU 
executes the copy of the program that is in main memory. This process is illustrated in 
Figure 1-16. 

The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor to move a 
value into the CPU. 



1.4 How  a Program Works 15 

Figure 1-16 A program is copied into main memory and then executed 

The program is copied 
from secondary storage The CPU executes 

to main memory. 

Disk drive CPU 

When a CPU executes the instructions in a program, it is engaged in a process that is known 
as the fetch-decode-execute cycle. This cycle, which consists of three steps, is repeated for 
each instruction in the program. The steps are: 

1. Fetch A program is a long sequence of machine language instructions. The first step of the 
cycle is to fetch, or read, the next instruction from memory into the CPU. 

2. Decode A machine language instruction is a binary number that represents a com- 
mand that tells the CPU to perform an operation. In this step the CPU decodes the 
instruction that was just fetched from memory, to determine which operation it 
should perform. 

3. Execute The last step in the cycle is to execute, or perform, the operation. 

Figure 1-17 illustrates these steps. 

Figure 1-1 7 The fetch-decode-execute cycle 

Fetch the next instruction 
looO:; a n  the program. 

I%7iEK 
10111000 Decode the instruction 
10011110 2 to determine which 
000~1010 ' operation to perform. 
11011100 

and so forth ... CPU 
Execute the instruction 
(perform the operation). 

From Machine Language to Assembly Language 
Computers can only execute programs that are written in machine language. As previously 
mentioned, a program can have thousands or even millions of binary instructions, and writing 
such a program would be very tedious and time consuming. Programming in machine language 
would also be very difficult because putting a 0 or a 1 in the wrong place will cause an error, 



16 Chapter 1 Introduction to Computers and Programming 

Although a computer's CPU only understands machine language, it is impractical for people 
to write programs in machine language. For this reason, assembly language was created in the 
early days of computing2 as an alternative to machine language. Instead of using binary num- 
bers for instructions, assembly language uses short words that are known as mnemonics. For 
example, in assembly language, the mnemonic add typically means to add numbers, mu1 typ- 
ically means to multiply numbers, and mov typically means to move a value to a location in 
memory. When a programmer uses assembly language to write a program, he or she can write 
short mnemonics instead of binary numbers. 

NOTE: There are many different versions of assembly language. It was mentioned 
earlier that each brand of CPU has its own machine language instruction set. Each 
brand of CPU typically has its own assembly language as well. 

Assembly language programs cannot be executed by the CPU, however. The CPU only 
understands machine language, so a special program known as an assembler is used to 
translate an assembly language program to a machine language program. This process is 
shown in Figure 1-18. The machine language program that is created by the assembler can 
then be executed by the CPU. 

Figure 1-18 An assembler translates an assembly language program to  a machine 
language program 

Assembly language 
program 

mov eax, Z 
add eax,  2 
mov Y ,  eax  

and so forth ... 

Machine language 
program 

101 00001 

10111000 

1001 11 10 
and so forth.. . 

High-Level Languages 
Although assembly language makes it unnecessary to write binary machine language 
instructions, it is not without difficulties. Assembly language is primarily a direct substitute 
for machine language, and like machine language, it requires that you know a lot about the 
CPU. Assembly language also requires that you write a large number of instructions for 
even the simplest program. Because assembly language is so close in nature to machine lan- 
guage, it is referred to as a low-level language. 

In the 1950s, a new generation of programming languages known as high-level languages 
began to appear. A high-level language allows you to create powerful and complex programs 
without knowing how the CPU works, and without writing large numbers of low-level 
instructions. In addition, most high-level languages use words that are easy to understand. 
For example, if a programmer were using COBOL (which was one of the early high-level 

The first assembly language was most likely that developed in the 1940s at Cambridge University for use with 
a historic computer known as the EDSAC. 



1.4 How a Program Works 17 

languages created in the 1950s), he or she would write the following instruction to display the 
message Hello world on the computer screen: 

DISPLAY "Hello world" 

Python is a modern, high-level programming language that we will use in this book. In 
Python you would display the message Hello world with the following instruction: 

print 'Hello world' 

Doing the same thing in assembly language would require several instructions, and an intimate 
knowledge of how the CPU interacts with the computer's output device. As you can see from this 
example, high-level languages allow programmers to concentrate on the tasks they want to per- 
form with their programs rather than the details of how the CPU will execute those programs. 

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists several 
of the more well-known languages. 

Table 1-1 Programming languages 

Language Description 

Ada Ada was created in the 1970s, primarily for applications used by the U.S. 
Department of Defense. The language is named in honor of Countess Ada 
Lovelace, an influential and historic figure in the field of computing. 

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose language 
that was originally designed in the early 1960s to be simple enough for begin- 
ners to learn. Today, there are many different versions of BASIC. 

FORTRAN FORmula TRANslator was the first high-level programming language. It was 
designed in the 1950s for performing complex mathematical calculations. 

COBOL Common Business-Oriented Language was created in the 1950s, and was 
designed for business applications. 

Pascal Pascal was created in 1970, and was originally designed for teaching program- 
ming. The language was named in honor of the mathematician, physicist, and 
philosopher Blaise Pascal. 

C and C++ C and C++ (pronounced "c plus plus") are powerful, general-purpose lan- 
guages developed at Bell Laboratories. The C language was created in 1972 

' 

and the C++ language was created in 1983. 

C# Pronounced "c sharp." This language was created by Microsoft around the 
year 2000 for developing applications based on the Microsoft .NET platform. 

Java Java was created by Sun Microsystems in the early 1990s. It can be used to develop 
programs that run on a single computer or over the Internet from a web server. 

JavaScript JavaScript, created in the 1990s, can be used in web pages. Despite its name, 
JavaScript is not related to Java. 

Python Python, the language we use in this book, is a general-purpose language created 
in the early 1990s. It has become popular in business and academic applications. 

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increas- 
ingly becoming a popular language for programs that run on web servers. 

Visual Basic Visual Basic (commonly known as VB) is a Microsoft programming language and 
software development environment that allows programmers to create Windows- 
based applications quickly. VB was originally created in the early 1990s. 



18 Chapter 1 Introduction to Computers and Programming 

Key Words, Operators, and Syntax: an B~cewiew 
Each high-level language has its own set of predefined words that the programmer must 
use to write a program. The words that make up a high-level programming language are 
known as key words or reserved words. Each key word has a specific meaning, and can- 
not be used for any other purpose. You previously saw an example of a Python statement 
that uses the key word p r i n t  to print a message on the screen. Table 1-2 shows all of the 
Python key words. 

Table 1-2 The Python key words 

and from 

a s  e l i f  g l o b a l  

a s s e r t  else i f  

b r e a k  e x c e p t  i m p o r t  

c l a s s  e x e c  i n  

c o n t i n u e  f i n a l l y  is  

d e  f f o r  lambda 

- 

n o t  w h i l e  

o r  w i t h  

p a s s  y i e l  

p r i n t  

r a i s e  

r e t u r n  

t r y  

In addition to key words, programming languages have operators that perform various 
operations on data. For example, all programming languages have math operators that per- 
form arithmetic. In Python, as well as most other languages, the + sign is an operator that 
adds two numbers. The following adds 12 and 75: 

There are numerous other operators in the Python language, many of which you will learn 
about as you progress through this text. 

In addition to key words and operators, each language also has its own syntax, which is a 
set of rules that must be strictly followed when writing a program. The syntax rules dictate 
how key words, operators, and various punctuation characters must be used in a program. 
When you are learning a programming language, you must learn the syntax rules for that 
particular language. 

The individual instructions that you use to write a program in a high-level programming 
language are called statements. A programming statement can consist of key words, oper- 
ators, punctuation, and other allowable programming elements, arranged in the proper 
sequence to perform an operation. 

Compilers and interpreters 
Because the CPU understands only machine language instructions, programs that are writ- 
ten in a high-level language must be translated into machine language. Depending on the 
language that a program has been written in, the programmer will use either a compiler or 
an interpreter to make the translation. 



1.4 How a Program Works 19 

A conzpiler is a program that translates a high-level language program into a separate 
machine language program. The machine language program can then be executed any time 
it is needed. This is shown in Figure 1-19. As shown in the figure, compiling and executing 
are two different processes. 

Figure 1-19 Compiling a high-level proqram and executing it 

High-level language Machine language 
program program 

The compiler is used 
to translate the high-level 1011 1000 
language program to a 10011 110 

machine language program. and so forth ... 

Machine language 
program 

CPU 

The machine language 
program can be executed 
at any time, without using 

the compiler. and so forth ... 

The Python language uses an interpreter, which is a program that both translates and 
executes the instructions in a high-level language program. As the interpreter reads each 
individual instruction in the program, it converts it to machine language instructions 
and then immediately executes them. This process repeats for every instruction in 
the program. This process is illustrated in Figure 1-20. Because interpreters combine 
translation and execution, they typically do not create separate machine language 
programs. 

Figure 1-28 Executing a high-level program with an interpreter 

H~gh-level language 
program CPU 

Mach~ne language 

prlnt "Hello lnstruct~on 

Earthling" 10100001 

and so forth A 
The interpreter translates each high-level instruction to 

its equivalent machine language instructions and 
immediately executes them. 

This process is repeated for each high-level instruction. 



20 Chapter 1 Introduction to Computers and Programming 

The statements that a programmer writes in a high-level language are called source code, 
or simply code. Typically, the programmer types a program's code into a text editor and 
then saves the code in a file on the computer's disk. Next, the programmer uses a compiler 
to translate the code into a machine language program, or an interpreter to translate and 
execute the code. If the code contains a syntax error, however, it cannot be translated. A 
syntax error is a mistake such as a misspelled key word, a missing punctuation character, 
or the incorrect use of an operator. When this happens the compiler or interpreter displays 
an error message indicating that the program contains a syntax error. The programmer cor- 
rects the error and then attempts once again to translate the program. 

NOTE: Human languages also have syntax rules. Do you remember when you took 
your first English class, and you learned all those rules about commas, apostrophes, 
capitalization, and so forth? You were learning the syntax of the English language. 

Although people commonly violate the syntax rules of their native language when 
speaking and writing, other people usually understand what they mean. Unfortunately, 
compilers and interpreters do not have this ability. If even a single syntax error appears 
in a program, the program cannot be compiled or executed. When an interpreter 
encounters a syntax error, it stops executing the program. 

Checkpoint 
* 

1.18 A CPU understands instructions that are written only in what language? 

1.19 A program has to be copied into what type of memory each time the CPU executes it? 

1.20 When a CPU executes the instructions in a program, it is engaged in what process? 

1.21 What is assembly language? 

1.22 What type of programming language allows you to create powerful and complex 
programs without knowing how the CPU works? 

1.23 Each language has a set of rules that must be strictly followed when writing a 
program. What is this set of rules called? 

1.24 What do you call a program that translates a high-level language program into a 
separate machine language program? 

1.25 What do you call a program that both translates and executes the instructions in a 
high-level language program? 

1.26 What type of mistake is usually caused by a misspelled key word, a missing 
punctuation character, or the incorrect use of an operator? 

k- CONCEPT: The Python interpreter can run Python programs that are saved in files, 
or interactively execute Python statements that are typed at the keyboard. 
Python comes with a program named IDLE that simplifies the process of 
writing, executing, and testing programs. 



1.5 Using Python 21 

Before you can try any of the programs shown in this book, or write any programs of your 
own, you need to make sure that Python is installed on your computer and properly con- 
figured. If you are working in a computer lab, this has probably been done already. If you 
are using your own computer, you can follow the instructions in Appendix A to install 
Python from the accompanying CD. 

The Python Imterpretes 
You learned earlier that Python is an interpreted language. When you install the Python lan- 
guage on your computer, one of the items that is installed is the Python interpreter. The 
Python interpreter is a program that can read Python programming statements and execute 
them. (Sometimes we will refer to the Python interpreter simply as the interpreter.) 

You can use the interpreter in two modes: interactive mode and script mode. In interactive 
mode, the interpreter waits for you to type Python statements on the keyboard. Once you 
type a statement, the interpreter executes it and then waits for you to type another state- 
ment. In script mode, the interpreter reads the contents of a file that contains Python state- 
ments. Such a file is known as a Python program or a Python script. The interpreter exe- 
cutes each statement in the Python program as it reads it. 

Once Python has been installed and set up on your system, you start the interpreter in interac- 
tive mode by going to the operating system's command line and typing the following command: 

python 

If you are using Windows, you can alternatively click the Start button, then All 
Programs. You should see a program group named something like Python 2.5. (The 
"2.5" is the version of Python that is installed. At the time this is being written, Python 
2.5 is the latest version.) Inside this program group you should see an item named 
Python (command line). Clicking this menu item will start the Python interpreter in 
interactive mode. 

When the Python interpreter starts in interactive mode, you will see something like the fol- 
lowing displayed in a console window: 

Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit 

(Intel)] on win32 

Type "help", "copyright", "credits" or "license" for more information. 
>>> 

The >>> that you see is a prompt that indicates the interpreter is wait& for you to type a 
Python statement. Let's try it out. One of the simplest statements that you can write in Python 
is a p r i n t  statement, which causes a message to be displayed on the screen. For example, the 
following statement causes the message Python programming i s  fun! to be displayed: 

print 'Python programming is fun! ' 

Notice that after the word p r i n t ,  we have written Python programming i s  fun!  
inside a set of single-quote marks. The quote marks are necessary, but they will not be 



22 Chapter 1 Introduction to Computers and Programming 

displayed. They simply mark the beginning and the end of the text that we wish to display. 
Here is an example of how you would type this p r i n t  statement at the interpreter's 
prompt: 

>>> print 'Python programming is fun! ' 

After typing the statement you press the Enter key and the Python interpreter executes the 
statement, as shown here: 

>>> print ' Python programming is fun! ' F 1  
Python programming is fun! 
>>> 

After the message is displayed, the >>> prompt appears again, indicating that the inter- 
preter is waiting for you to enter another statement. Let's look at another example. In the 
following sample session we have entered two p r i n t  statements. 

>>> print 'To be or not to be' -1 
To be or not to be 

>>> print 'That is the question. ' 
That is the question. 
>>> 

If you incorrectly type a statement in interactive mode, the interpreter will display an error 
message. This will make interactive mode useful to you while you learn Python. As you 
learn new parts of the Python language, you can try them out in interactive mode and get 
immediate feedback from the interpreter. 

To quit the Python interpreter in interactive mode on a Windows computer, press Ctrl-Z 
(pressing both keys together) followed by Enter. On a Mac, Linux, or UNIX computer, 
press Ctrl-D. 

Writing Python Programs and Running 
Them in I fcrbt  Mode 
Although interactive mode is useful for testing code, the statements that you enter in inter- 
active mode are not saved as a program. They are simply executed and their results dis- 
played on the screen. If you want to save a set of Python statements as a program, you save 
those statements in a file. Then, to execute the program, you use the Python interpreter in 
script mode. 

For example, suppose you want to write a Python program that displays the following three 
lines of text: 

Nudge nudge 

Wink wink 

Know what I mean? 

To write the program you would use a simple text editor like Notepad (which is installed 
on all Windows computers) to create a file containing the following statements: 

print 'Nudge nudge ' 
print 'Wink wink' 

print ' Know what I mean? ' 



1.5 Using Python 

must be sure to save the program as a plain text file. Otherwise the Python interpreter 
will not be able to read its contents. 

When you save a Python program, you give it a name that ends with the . py extension, which 
identifies it as a Python program. For example, you might save the program previously shown 
with the name test .py . To run the program you would go to the directory in which the file 
is saved and type the following command at the operating system command line: 

python test .py 

This starts the Python interpreter in script mode and causes it to execute the statements in 
the file test. py . When the program finishes executing, the Python interpreter exits. 

The BDLE Pragrammlng Environment 

The previous sections described how the Python interpreter can be started in interactive 
mode or script mode at the operating system command line. As an alternative, you can use 
an integrated development environment, which is a single program that gives you all of the 
tools you need to write, execute, and test a program. 

Recent versions of Python include a program named IDLE, which is automatically installed 
when the Python language is installed. (IDLE stands for Integrated DeveLopment Environment.) 
When you run IDLE, the window shown in Figure 1-21 appears. Notice that the >>> prompt 
appears in the IDLE window, indicating that the interpreter is running in interactive mode. You 
can type Python statements at this prompt and see them executed in the IDLE window. 

IDLE also has a built-in text editor with features specifically designed to help you write 
Python programs. For example, the IDLE editor "colorizes" code so that key words and 
other parts of a program are displayed in their own distinct colors. This helps make pro- 
grams easier to read. In IDLE you can write programs, save them to disk, and execute them. 
Appendix B provides a quick introduction to IDLE, and leads you through the process of 
creating, saving, and executing a Python program. 

Figure 1-21 IDLE 

~ * * w * * r h * * * * * * * i * * * * Y I * ~ I I * 1 ~ * h . ~ * * Y ~ * ~ * ~ * * * * * * ~ ~ * * + * * ~ * * ~ ~ ~ Y ~ e e *  

Persons1 fxrewal l  software may warn about t h e  connectron IDLE S' 
Palres t o  Its sLtbprocess uelng t n r s  camptEter'= I n t e r n a l  loopback 
In t e r f ace .  T h ~ s  connection a s  oot  v l s r b l e  on any ex te rna l  
In t e r f ace  m d  no d ~ c a  I.? sen t  t o  o r  recexeed from the  Enterne 
* * ~ ~ * ~ X * * ~ ~ * * ~ ~ X ~ ~ ~ ~ * ~ X ~ ~ X * ~ ~ ~ ' ~ * ~ I , Y ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ I , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Y ~  



24 Chapter 1 Introduction to Computers and Programming 















Designing a Program 2.5 Variables 

2.2 Input, Processing, and Outpu t  I 1:: 2.6 Reading Input  from the  

Displaying Outpu t  w i th  the print Key board 
I Statement 2.7 Performing Calculations / 2.4 Comments 2.8 More  About  Data Outpu t  
i 

Designing a Pmgraaw 

- CONCEPT: Programs must be carefully designed before they are written. During the 
design process, programmers use tools such as pseudocode and flow- 
charts to create models of programs. 

In Chapter 3 you learned that programmers typically use high-level languages such as Python 
to create programs. There is much more to creating a program than writing code, however. 
The process of creating a program that works correctly typically requires the five phases 
shown in Figure 2-1. The entire process is known as the program development cycle. 

Figure 2-1 The program development cycle 

Design the Write the Correct Test the Correct 
program syntax errors program logic errors 



32 Chapter 2 Input, Processing, and Output 

Let's take a closer look at each stage in the cycle. 

1. Design the Program All professional programmers will tell you that a program should 
be carefully designed before the code is actually written. When programmers begin a 
new project, they never jump right in and start writing code as the first step. They 
start by creating a design of the program. There are several ways to design a program, 
and later in this section we will discuss some techniques that you can use to design 
your Python programs. 

2. Write the Code After designing the program, the programmer begins writing code in a 
high-level language such as Python. Recall from Chapter 1 that each language has its own 
rules, known as syntax, that must be followed when writing a program. A language's syn- 
tax rules dictate things such as how key words, operators, and punctuation characters 
can be used. A syntax error occurs if the programmer violates any of these rules. 

3. Correct Syntax Errors If the program contains a syntax error, or even a simple mis- 
take such as a misspelled key word, the compiler or interpreter will display an error 
message indicating what the error is. Virtually all code contains syntax errors when it 
is first written, so the programmer will typically spend some time correcting these. 
Once all of the syntax errors and simple typing mistakes have been corrected, the pro- 
gram can be compiled and translated into a machine language program (or executed 
by an interpreter, depending on the language being used). 

4. Test the Program Once the code is in an executable form, it is then tested to deter- 
mine whether any logic errors exist. A logic error is a mistake that does not prevent 
the program from running, but causes it to produce incorrect results. (Mathematical 
mistakes are common causes of logic errors.) 

5. Correct Logic Errors If the program produces incorrect results, the programmer 
debugs the code. This means that the programmer finds and corrects logic errors in 
the program. Sometimes during this process, the programmer discovers that the pro- 
gram's original design must be changed. In this event, the program development cycle 
starts over, and continues until no errors can be found. 

More About the Design Process 
The process of designing a program is arguably the most important part of the cycle. You 
can think of a program's design as its foundation. If you build a house on a poorly con- 
structed foundation, eventually you will find yourself doing a lot of work to fix the house! 
A program's design should be viewed no differently. If your program is designed poorly, 
eventually you will find yourself doing a lot of work to fix the program. 

The process of designing a program can be summarized in the following two steps: 

1. Understand the task that the program is to perform. 
2. Determine the steps that must be taken to perform the task. 

Let's take a closer look at each of these steps. 

Understarad the Task That the Program i s  to BePfForm 
It is essential that you understand what a program is supposed to do before you can determine 
the steps that the program will perform. Typically, a professional programmer gains this under- 
standing by working directly with the customer. We use the term customer to describe the 



2.1 Designing a Program 

person, group, or organization that is asking you to write a program. This could be a customer 
in the traditional sense of the word, meaning someone who is paying you to write a program. 
It could also be your boss, or the manager of a department within your company. Regardless 
of whom it is, the customer will be relying on your program to perform an important task. 

To get a sense of what a program is supposed to do, the programmer usually interviews the 
customer. During the interview, the customer will describe the task that the program should 
perform, and the programmer will ask questions to uncover as many details as possible about 
the task. A follow-up interview is usually needed because customers rarely mention everything 
they want during the initial meeting, and programmers often think of additional questions. 

The programmer studies the information that was gathered from the customer during the inter- 
views and creates a list of different software requirements. A software requirement is simply a 
single task that the program must perform in order to satisfy the customer. Once the customer 
agrees that the list of requirements is complete, the programmer can move to the next phase. 

TIP : If you choose to become a professional software developer, your customer will be 
anyone who asks you to write programs as part of your job. As long as you are a student, 
however, your customer is your instructor! In every programming class that you will take, 
it's practically guaranteed that your instructor will assign programming problems for you 
to complete. For your academic success, make sure that you understand your instructor's 
requirements for those assignments and write your programs accordingly. 

Once you understand the task that the program will perform, you begin by breaking down 
the task into a series of steps. This is similar to the way you would break down a task into 
a series of steps that another person can follow. For example, suppose someone asks you 
how to boil water. You might break down that task into a series of steps as follows: 

1. Pour the desired amount of water into a pot. 
2. Put the pot on a stove burner. 
3. 'Turn the burner to high. 
4. Watch the water until you see large bubbles rapidly rising. When this happens, the 

water is boiling. 

This is an example of an algorithm, which is a set of well-defined logical steps that must 
be taken to perform a task. Notice that the steps in this algorithm are sequentially 
ordered. Step 1 should be performed before step 2, and so on. If a person follows these 
steps exactly as they appear, and in the correct order, he or she should be able to boil 
water successfully. 

A programmer breaks down the task that a program must perform in a similar way. An 
algorithm is created, which lists all of the logical steps that must be taken. For example, 
suppose you have been asked to write a program to calculate and display the gross pay for 
an hourly paid employee. Here are the steps that you would take: 

1. Get the number of hours worked. 
2. Get the hourly pay rate. 



34 Chapter 2 Input, Processing, and Output 

3. Multiply the number of hours worked by the hourly pay rate. 
4. Display the result of the calculation that was performed in steps 3. 

Of course, this algorithm isn't ready to be executed on the computer. The steps in this list 
have to be translated into code. Programmers commonly use two tools to help them accom- 
plish this: pseudocode and flowcharts. Let's look at each of these in more detail. 

Because small mistakes like misspelled words and forgotten punctuation characters can cause 
syntax errors, programmers have to be mindful of such small details when writing code. For 
this reason, programmers find it helpful to write a program in pseudocode (pronounced "sue 
doe code") before they write it in the actual code of a programming language such as Python. 

The word "pseudo" means fake, so pseudocode is fake code. It is an informal language that 
has no syntax rules, and is not meant to be compiled or executed. Instead, programmers use 
pseudocode to create models, or "mock-ups" of programs. Because programmers don't have 
to worry about syntax errors while writing pseudocode, they can focus all of their attention 
on the program's design. Once a satisfactory design has been created with pseudocode, the 
pseudocode can be translated directly to actual code. Here is an example of how you might 
write pseudocode for the pay calculating program that we discussed earlier: 

Input the hours worked 
Input the hourly pay rate 
Calculate gross pay as hours worked multiplied by pay rate 
Display the gross pay 

Each statement in the pseudocode represents an operation that can be performed in Python. 
For example, Python can read input that is typed on the keyboard, perform mathematical 
calculations, and display messages on the screen. 

Flowcharting is another tool that programmers use to design programs. A f7owchart is a 
diagram that graphically depicts the steps that take place in a program. Figure 2-2 shows 
how you might create a flowchart for the pay calculating program. 

Notice that there are three types of symbols in the flowchart: ovals, parallelograms, and a 
rectangle. Each of these symbols represents a step in the program, as described here: 

The ovals, which appear at the top and bottom of the flowchart, are called terminal 
symbols. The Start terminal symbol marks the program's starting point and the End 
terminal symbol marks the program's ending point. 

Parallelograms are used as input symbols and output symbols. They represent steps in 
which the program reads input or displays output. 
Rectangles are used as processing symbols. They represent steps in which the program 
performs some process on data, such as a mathematical calculation. 

The symbols are connected by arrows that represent the "flow" of the program. To step 
through the symbols in the proper order, you begin at the Start terminal and follow the 
arrows until you reach the End terminal. 



2.2 Input, Processing, and Output 35 

flqure 2-2 Flowchart for the pay calculatina oroaram 

1 lnput the hours worked 1 

1 lnput the hourly pay rate 1 
Calculate gross pay as 
hours worked multiplied 

by pay rate 

Display the gross pay i 

Checkpoint 

2.1 Who is a programmer's customer? 

2.2 What is a software requirement? 

2.3 What is an algorithm? 

2.4 .What is pseudocode? 

2.5 What is a flowchart? 

2.6 What do each of the following symbols mean in a flowchart? 
* Oval 
* Parallelogram 
0 Rectangle 

Input, Processing, and Output 

- CONCEPT: Input is data that the program receives. When a program receives data, it 
usually processes it by performing some operation with it. The result of 
the operation is sent out of the program as output. 



36 Chapter 2 Input, Processing, and Output 

Computer programs typically perform the following three-step process: 

I. Input is received. 
2. Some process is performed on the input. 
3. Output is produced. 

Input is any data that the program receives while it is running. One common form of input 
is data that is typed on the keyboard. Once input is received, some process, such as a math- 
ematical calculation, is usually performed on it. The results of the process are then sent out 
of the program as output. 

Figure 2-3 illustrates these three steps in the pay calculating program that we discussed ear- 
lier. The number of hours worked and the hourly pay rate are provided as input. The pro- 
gram processes this data by multiplying the hours worked by the hourly pay rate. The 
results of the calculation are then displayed on the screen as output. 

Figure 2-3 The input, processing, and output of the pay calculating program 

Input 

Hours worked 

Hourly pay rate 

Process 

Multiply hours worked 
by hourly pay rate 

Output - Gross pay 

In this chapter we will discuss basic ways that you can perform input, processing, and out- 
put using Python. 

rS% - &if f l ~  * - Displaying Output with the print Statement 
- s-E~&r 

I 
i- CONCEPT: You use the p r i n t  statement to display outrut in a Python program. 

Perhaps the most fundamental thing that a program can do is display a message on the 
computer screen. As you saw in Chapter 1, the p r i n t  statement in Python displays output 
on the screen. Here is an example: 

p r i n t  ' Hello world'  

The purpose of this statement is to display the message Hello world on the screen. Notice 
that after the word p r i n t ,  we have written Hello world inside single-quote marks. The 
quote marks will not be displayed when the statement executes. They simply mark the 
beginning and the end of the text that we wish to display. 

Suppose your instructor tells you to write a program that displays your name and address 
on the computer screen. Program 2-1 shows an example of such a program, with the out- 
put that it will produce when it runs. (The line numbers that appear in a program listing in 



2.3 Displaying Output with the print Statement 37 

this book are not  part of the program. We use the line numbers in our discussion to refer 
to parts of the program.) 

1 print 'Kate Austen' 

2 print ' 123 Dharma Lane' 
3 print 'Asheville, NC 28899' 

Program Output 

Kate Aust 

12 

As 899 

It is important to understand that the statements in this program execute in the order that they 
appear, from the top of the program to the bottom. When you run this program, the first state- 
ment will execute, followed by the second statement, and followed by the third statement. 

Programs almost always work with data of some type. For example, Program 2-1 uses the 
following three pieces of data: 

'Kate Austen' 

'123 Dharma Lane' 

'Asheville, NC 28899 ' 

These pieces of data are sequences of characters. In programming terms, a sequence of 
characters that is used as data is called a string. When a string appears in the actual code 
of a program it is called a string literal. In Python code, string literals must be enclosed in 
quote marks. As mentioned earlier, the quote marks simply mark where the string data 
begins and ends. 

In Python you can enclose string literals in a set of single-quote marks( ) or a set of double- 
quote marks ( * ) .  The string literals in Program 2-1 are enclosed in single-quote marks, but 
the program could also be written as shown in Program 2-2. 

Program 2-2 (double-quotes.py) 

1 print "Kate Austen" 

2 print "123 Dharma Lane" 

3 print "Asheville, NC 28899" 

- 
te Aust 

3 Dharm . . . - 

Program Output 

K a 
12 ? 

Asneville, 18899 



38 Chapter 2 Input, Processing, and Output 

If you want a string literal to contain either a single-quote or an apostrophe as part of the 
string, you can enclose the string literal in double-quote marks. For example, Program 2-3 
prints two strings that contain apostrophes. 

Program 2-3 (apostrophe.py) 

1 print "Don't fear! " 
2 print "I'm here!" 

Program Output 

Don't fear! 

I'm here! 

Likewise, you can use single-quote marks to enclose a string literal that contains double- 
quotes as part of the string. Program 2-4 shows an example. 

Program 2-4 (display-quote.py) 

1 print 'Your assignment is to read "Hamlet" by tomorrow. ' 

Program Output 

Your assignment is to read "Hamlet" by tomorrow. 

Python also allows you to enclose string literals in triple quotes (either " " or I ). Triple- 
quoted strings can contain both single quotes and double quotes as part of the string. The 
following statement shows an example: 

print """I'm reading "Hamlet" tonight.""" 

This statement will print 

I'm reading "Hamlet" tonight. 

Triple quotes can also be used to surround multiline strings, something for which single and 
double quotes cannot be used. Here is an example: 

print " " " "  One 
Two 

Three " " "  

This statement will print 

One 

Two 

Three 



2.4 Comments 39 

p~ Checkpoint 

2.7 Write a p r i n t  statement that displays your name. 

2.8 Write a p r i n t  statement that displays the following text: 

Python's the best! 

2.9 Write a p r i n t  statement that displays the following text: 

The cat said "meow. " 

- CONCEPT: Comments are notes of explanation that document lines or sections of a 
program. Comments are part of the program, but the Python interpreter 
ignores them. They are intended for people who may be reading the 
source code. 

Comments are short notes placed in different parts of a program, explaining how those 
parts of the program work. Although comments are a critical part of a program, they are 
ignored by the Python interpreter. Comments are intended for any person reading a pro- 
gram's code, not the computer. 

In Python you begin a comment with the # character. When the Python interpreter sees 
a # character, it ignores everything from that character to the end of the line. For exam- 
ple, loolc at Program 2-5. Lines 1 and 2 are comments that briefly explain the program's 
purpose. 

Program 2-5 (comment1 .py) 

1 # This program displays a person's 
2 # name and address. 
3 print 'Kate Austen' 

4 print ' 123 Dharma Lane' 

5 print 'Asheville, NC 28899' 

rte Aust 

3 Dharn 
. 

la Lane 
- - -  

Program Output 

K a 

12 

Ashevllle, NC ,28899 

Programmers commonly write end-line comments in their code. An end-line comment is a 
comment that appears at the end of a line of code. It usually explains the statement that 
appears in that line. Program 2-6 shows an example. Each line ends with a comment that 
briefly explains what the line does. 



40 Chapter 2 Input, Processing, and Output 

I. print "Kate Austen" # Display the name 

2 print "123 Dharma Lane" # Display the street address 

3 print "Asheville, NC 28899" # Display the city, state, and ZIP 

Program Output 

Kate Austen 

123 Dharma Lane 

Asheville, NC 28899 

As a beginning programmer, you might be resistant to the idea of liberally writing com- 
ments in your programs. After all, it can seem more productive to write code that actually 
does something! It is crucial that you take the extra time to write comments, however. They 
will almost certainly save you and others time in the future when you have to modify or 
debug the program. Large and complex programs can be almost impossible easy to read 
and understand if they are not properly commented. 

Variables 

CONCEPT: A variable is a name that represents a value stored in the computer's 
memory. 

Programs usually store data in the computer's memory and perform operations on that 
data. For example, consider the typical online shopping experience: you browse a website 
and add the items that you want to purchase to the shopping cart. As you add items to the 
shopping cart, data about those items is stored in memory. Then, when you click the check- 
out button, a program running on the website's computer calculates the cost of all the items 
you have in your shopping cart, applicable sales taxes, shipping costs, and the total of all 
these charges. When the program performs these calculations, it stores the results in the 
computer's memory. 

Programs use variables to access and manipulate data that is stored in memory. A 
variable is a name that represents a value in the computer's memory. For example, a pro- 
gram that calculates the sales tax on a purchase might use the variable name t a x  to rep- 
resent that value in memory. And a program that calculates the distance between two 
cities might use the variable name d i s t a n c e  to represent that value in memory. When 
a variable represents a value in the computer's memory, we say that the variable 
references the value. 

Creating Variables with Assignment Statements 

You use an assignment statement to create a variable in Python. Here is an example of an 
assignment statement: 

age = 25 



2.5 Variables 41 

After this statement executes, a variable named age will be created and it will reference the 
value 25. This concept is shown in Figure 2-4. In the figure, think of the value 25 as being 
stored somewhere in the computer's memory. The arrow that points from age to the value 
25 indicates that the name age references the value. 

Figure 2-4 The age variable references the value 25 

age ------+ (25/ 

An assignment statement is written in the following general format: 

variable = expression 

The equal sign ( = )  is known as the assignment operator. In the general format, 
v a r i a b l e  is the name of a variable and e x p r e s s i o n  is a value, or any piece of code 
that results in a value. After an assignment statement executes, the variable listed on 
the left side of the = operator will reference the value given on the right side of the = 

operator. 

In an assignment statement, the variable that is receiving the assignment must appear on 
the left side of the = operator. For example, the following statement will cause an error: 

25 = age # This is an error! 

The code in Program 2-7 demonstrates a variable. Line 2 creates a variable named room 
and assigns it the value 503. The p r i n t  statements in lines 3 and 4 display a message. 
Notice that line 4 displays the value that is referenced by the room variable. 

Program 2-7 (variable-demo.py) 

I # This program demonstrates a variable. 
2 room = 503 

3 print 'I am staying in room number' 

4 print room 

Program Output 

I room number 

5 C 

Notice that in line 4 there are no quotation marks around room. If q u ~ a t i o n  marks were 
placed around room, it would have indicated that we want to display the word "room" 
instead of the contents of the room variable. In other words, the following statement will 
display the contents of the room variable: 

print room 

This statement, however, will display the word "age": 

print 'age' 



42 Chapter 2 Input, Processing, and Output 

Program 2-8 shows a sample program that uses two variables. Line 2 creates a variable 
named t o p  speed ,  assigning it the value 160. Line 3 creates a variable named d i s t a n c e ,  
assigning itThe value 300. This is illustrated in Figure 2-5. 

# Create two variables: top-speed and distance. 
top-speed = 1 6 0  

distance = 3 0 0  

# Display the values referenced by the variables. 

print 'The top speed is' 

print top-speed 

print ' The distance traveled is ' 
print distance 

Program Output 
The 

16 0  

The distance traveled is 

300  

Figure 2-5 Two variables 

top-speed -w 
distance -m 

W A R N  IN C ! You cannot use a variable until you have assigned a value to it. An 
error will occur if you try to perform an operation on a variable, such as printing it, 
before it has been assigned a value. 

Sometimes a simple typing mistake will cause this error. One example is a misspelled 
variable name, as shown here: 

temperature = 74 .5  # Create a variable 
print tempereture # Error! Misspelled variable name 

In this code, the variable t e m p e r a t u r e  is created by the assignment statement. The 
variable name is spelled differently in the p r i n t  statement, however, which will cause 
an error. Another example is the inconsistent use of uppercase and lowercase letters in 
a variable name. Here is an example: 

temperature = 74 .5  # Create a variable 
print Temperature # Error! Inconsistent use of case 

In this code the variable t e m p e r a t u r e  (in all lowercase letters) is created by the assign- 
ment statement. In the p r i n t  statement, the name Tempera tu re  is spelled with an 
uppercase T. This will cause an error because variable names are case sensitive in Python. 



2.5 Variables 43 

Although you are allowed to make up your own names for variables, you must follow these 
rules: 

You cannot use one of Python's key words as a variable name. (See Table 1-2 for a list 
of the key words.) 
A variable name cannot contain spaces. 
The first character must be one of the letters a through z, A through Z, or an under- 
score character (-). 
After the first character you may use the letters a through z or A through 2, the dig- 
its O through 9, or underscores. 
Uppercase and lowercase characters are distinct. This means the variable name 
Itemsordered is not the same as itemsordered. 

In addition to following these rules, you should always choose names for your variables 
that give an indication of what they are used for. For example, a variable that holds the tem- 
perature might be named temperature, and a variable that holds a car's speed might be 
named speed. You may be tempted to give variables names like x and b2,  but names like 
these give no clue as to what the variable's purpose is. 

Because a variable's name should reflect the variable's purpose, programmers often find 
themselves creating names that are made of multiple words. For example, consider the fol- 
lowing variable names: 

grosspay 

payrate 

hotdogssoldtoday 

Unfortunately, these names are not easily read by the human eye because the words aren't 
separated. Because we can't have spaces in variable names, we need to find another way 
to separate the words in a multiword variable name, and malte it more readable to the 
human eye. 

One way to do this is to use the underscore character to represent a space. For example, 
the following variable names are easier to read than those previously shown: 

grossgay 
pay-rate 

hot-dogs-sold-today 

This style of naming variables is popular among Python programmers and is the style we 
will use in this book. There are other popular styles, however, such as the camelcase nam- 
ing convention. camelcase names are written in the following manner: 9. 

The variable name begins with lowercase letters. 
The first character of the second and subsequent words is written in uppercase. 

For example, the following variable names are written in camelcase: 



44 Chapter 2 Input, Processing, and Output 

Table 2-1 lists several sample variable names and indicates whether each is legal or illegal 
in Python. 

Table 2-1 Sample variable names 

Variable Name Legal or Illegal? 

units- per- day Legal 

dayofweek Legal 

3dGraph Illegal. Variable names cannot begin with a digit. 

June1997 Legal 

Mix tu re#  3 Illegal. Variable names may only use letters, digits, or underscores. 

Displaying Multiple Items with the print Statement 
If you refer to Program 2-7 you will see that we used the following two p r i n t  statements 
in lines 3 and 4: 

print ' I am staying in room number' 
print room 

We used two p r i n t  statements because we needed to display two pieces of data. Line 3 
displays the string literal I am s t a y i n g  i n  room number',  and line 4 displays the 
value referenced by the room variable. 

This program can be simplified, however, because pytho6 allows us to display multiple 
items with one p r i n t  statement. We simply have to separate the items with commas as 
shown in Program 2-9. 

Program 2-9 (variable-demo3.p~) 

1 # This program demonstrates a variable. 
2 room = 503 

3 print 'I am staying in room number', room 

Program Output 

I am staying in room number 503 

The p r i n t  statement in line 4 displays two items: a string literal followed by the value ref- 
erenced by the room variable. Notice that Python automatically printed a space between 
these two items. When multiple items are printed in one line of output, they will automat- 
ically be separated by a space. 



2.5 Variables 45 

Variables are called "variable" because they can reference different values while a program 
is running. When you assign a value to a variable, the variable will reference that value until 
you assign it a different value. For example, look at Program 2-10. The statement in line 3 
creates a variable named dollars and assigns it the value 2.75. This is shown in the top 
part of Figure 2-6. Then, the statement in line 8 assigns a different value, 99.95, to the 
dollars variable. The bottom part of Figure 2-6 shows how this changes the dollars 
variable. The old value, 2.75, is still in the computer's memory, but it can no longer be used 
because it isn't referenced by a variable. (The Python interpreter will eventually remove the 
unusable value from memory.) 

Program 2-10 (variable-demo4.p~) 

# This program demonstrates variable reassignment. 

# Assign a value to the dollars variable. 
dollars = 2.75 

print ' I have ' , dollars, ' in my account. ' 

# Reassign dollars so it references 

# a different value. 

dollars = 99.95 

print 'But now I have ' , dollars, ' in my account! ' 

Program Output 

I have 2.75 in my account. 

But now I have 99.95 in my account! 

"%wre s 2-6 Variable reassignment in Program 2-3 0 

The dollars var~able after bne 3 executes 

dollars ------+= 
The dollars variable after line 8 executes. 

dollars 1 

In Chapter 1 we discussed the way that computers store data in memory. (See section 1.3) 
You might recall from that discussion that computers use a different technique for storing 
real numbers (numbers with a fractional part) than for storing integers. Not only are these 
types of numbers stored differently in memory, but similar operations on them are carried 
out in different ways. 



46 Chapter 2 Input, Processing, and Output 

Because different types of numbers are stored and manipulated in different ways, Python 
uses data types to categorize values in memory. When an integer is stored in memory, it is 
classified as an i n t ,  and when a real number is stored in memory, it is classified as a f l o a t .  

Let's look at how Python determines the data type of a number. Several of the programs 
that you have seen so far have numeric data written into their code. For example, the fol- 
lowing statement, which appears in Program 2-9, has the number 503 written into it. 

room = 503 

This statement causes the value 503 to be stored in memory, and it makes the room vari- 
able reference it. The following statement, which appears in Program 2-10, has the number 
2.75 written into it. 

dollars = 2.75 

This statement causes the value 2.75 to be stored in memory, and it makes the d o l l a r s  
variable reference it. A number that is written into a program's code is called a numeric 
literal. When the Python interpreter reads a numeric literal in a program's code, it deter- 
mines its data type according to the following rules: 

* A numeric literal that is written as a whole number with no decimal point is consid- 
ered an i n t .  Examples are 7, 12 4, and - 9. 

* A numeric literal that is written with a decimal point is considered a f l o a t .  Examples 
are 1.5, 3.14159, and 5 .0 .  

So, the following statement causes the number 503 to be stored in memory as an i n t :  

room = 503 

And the following statement causes the number 2.75 to be stored in memory as a f l o a t :  

dollars = 2.75 

When you store an item in memory, it is important for you to be aware of the item's 
data type. As you will see, some operations behave differently depending on the type of 
data involved, and some operations can only be perfor&d on values of a specific data 

type. 

WARN IN C ! You cannot write currency symbols, spaces, or commas in numeric lit- 
erals. For example, the following statement will cause an error: 

value = $4,567.99 # Error! 

This statement must be written as: 

value = 4567.99 # Correct 

Storing Strings with the str Data Type 
In addition to the int and f l o a t  data types, Python also has a data type named str, which 
is used for storing strings in memory. The code in Program 2-11 shows how strings can be 
assigned to variables. 



2.5 Variables 47 

1 # Create variables to reference two strings. 
2 first-name = 'Kathryn' 

3 last name = 'Marino' - 
a 
5 # Display the values referenced by the variables. 
6 print first-name, last-name 

Program Output 

Kathryn Marino 

Checkpoint 

2.10 What is a variable? 

2.11 Which of the following are illegal variable names in Python, and why? 

X 

99bottles 

july2009 

theSalesFigureForFiscalYear 

r&d 

grade-report 

2.12 Is the variable name S a l e s  the same as s a l e s ?  Why or why not? 

2.13 Is the following assignment statement valid or invalid? If it is invalid, why? 

72 = amount 

2.14 What will the following code display? 

val = 99 

print ' The value is ' , 'val ' 

2.15 . Look at the following assignment statements: 

value1 = 99 

value2 = 45.9 

value3 = 7.0 

value4 = 7 

value5 = 'abc ' 

After these statements execute, what is the Python data type of the values referenced 
by each variable? 

2.16 What will be displayed by the following program? 

my-value = 99 

my-value = 0 

print my-value 



48 Chapter 2 Input, Processing, and Output 

I- C 0 N C E PT: Programs commonly need to read input typed by the user on the key- 
board. We will use the Python functions to do this. 

Most of the programs that you will write will need to read input, and then perform an oper- 
ation on that input. In this section, we will discuss a basic input operation: reading data 
that has been typed on the keyboard. When a program reads data from the keyboard, usu- 
ally it stores that data in a variable so it can be used later by the program. 

In this book we will use two of Python's built-in functions to read input from the keyboard. 
A function is a piece of prewritten code that performs an operation and then returns a value 
back to the program. We will use the i n p u t  function to read numeric data from the key- 
board, and the raw- input function to read strings as input. 

Python's i n p u t  function is useful for reading numeric input from the keyboard. You nor- 
mally use the i n p u t  function in an assignment statement that follows this general format: 

variable = input (prompt ) 

In the general format, prompt is a string that is displayed on the screen. The string's pur- 
pose is to instruct the user to enter a value. v a r i a b l e  is the name of a variable that will 
reference the data that was entered on the keyboard. Here is an example of a statement that 
uses the i n p u t  function to read data from the keyboard: 

hours = input ( ' How many hours did you work? ' ) 

When this statement executes, the following things happen: 

The string How many h o u r s  d id  you work? ' is displayed on the screen. 
The program pauses and waits for the user to type something on the keyboard, and 
then press the Enter key. 
When the Enter ltey is pressed, the data that was typed is assigned to the hours  variable. 

Program 2-12 shows a sample program that uses the i n p u t  function. 

Program 2-12 (input.py) 

1 # This program gets input from the user. 
2 age = input ( ' How old are you? ' ) 
3 print 'You said that you are', age, 'years old. ' 

e you? 

hat you 

28 [Ents 
are 28 years 

The statement in line 2 uses the i n p u t  function to read data that is typed on the keyboard. 
In the sample run, the user typed 28 and then pressed Enter. As a result, the integer value 
28 was assigned to the age variable. 



2.6 Reading Input from the Keyboard 49 

Take a closer look at the string we used as a prompt, in line 2: 

'How old are you? ' 

Notice that the last character in the string, inside the quote marks, is a space .  We put a 
space there because the i n p u t  function does not automatically display a space after the 
prompt. When the user begins typing characters, they will appear on the screen immediately 
after the prompt. Making the last character in the prompt a space visually separates the 
prompt from the user's input on the screen. 

When the user enters a number in response to the i n p u t  function, Python determines the 
number's data type in the same way that it determines a numeric literal's data type: If the 
number contains no decimal point it is stored in memory as an i n t .  If it contains a deci- 
mal point it is stored in memory as a f l o a t .  

NOTE: In this section, we mentioned the user. The user is simply any hypothetical 
person that is using a program and providing input for it. The user is sometimes called 
the end user. 

Although the i n p u t  f~~nction works well for reading numbers, it is not convenient for read- 
ing strings. In order for the i n p u t  function to read data as a string, the user has to enclose 
the data in quote-marks when he or she types it on the keyboard. Most users are not accus- 
tomed to doing this, so it's best to use another function: raw- input . 
The raw - i n p u t  function works like the i n p u t  function, with one exception: the 
raw i n p u t  function retrieves all keyboard input as a string. There is no need for the user 
to type quote marks around the data that is entered. Program 2-13 shows a sample pro- 
gram that uses the raw- input function to read strings. 

Program 2-1 3 (string-input.py) 

1 # Get the user's first name. 
2 first - name = raw-input( 'Enter your first name: ' ) 

3 .  

4 # Get the user's last name. 
5 last-name = raw-input( 'Enter your last name: ' ) 

6 

7 # Print a greeting to the user. 

8 print 'Hello', first-name, last-name 

ter you 

ter you 

110 Vin 

r first 

r last 

ny Brow 

name : 

name: B 
n 

Program Output (with input shown in bold) 

En 

En 

He 



50 Chapter 2 Input, Processing, and Output 

p& Checkpoint 

' 2.17 YOU need the user of a program to enter the amount of sales for the week. Write a - - 

statement that prompts the user to enter this data and assigns the input to a 
variable. 

2.18 You need the user of a program to enter a customer's last name. Write a statement 
that prompts the user to enter this data and assigns the input to a variable. 

Performing Calculntisns 

i C 0 N C EPT: Python has numerous operators that can be used to perform mathematical 
calculations. 

Most real-world algorithms require calculations to be performed. A programmer's tools for 
performing calculations are math operators. Table 2-2 lists the math operators that are pro- 
vided by the Python language. 

Table 2-2 Python math operators 

Symbol Operation Description 
- 

+ Addition Adds two numbers 

- Subtraction Subtracts one number from another 
X. Multiplication Multiplies one number by another 

/ Division Divides one number by another and gives the quotient 
0, 
O Remainder Divides one number by another and gives the remainder 
* * Exponent Raises a number to a power 

Programmers use the operators shown in Table 2-2 to create math expressions. A math 
expression performs a calculation and gives a value. The following is an example of a sim- 
ple math expression: 

The values on the right and left of the + operator are called operands. These are values that 
the + operator adds together. The value that is given by this expression is 14. 

Variables may also be used in a math expression. For example, suppose we have two vari- 
ables named h o u r s  and pay rate. The following math expression uses the * operator 
to multiply the value referenced by the h o u r s  variable by the value referenced by the 
pay - rate variable: 

hours * pay-rate 

When we use a math expression to calculate a value, normally we want to save that value 
in memory so we can use it again in the program. We do this with an assignment statement. 
Program 2-14 shows an example. 



2.7 Performing Calculations 53 

# Assign a value to the salary variable. 

salary = 2500.0 

# Assign a value to the bonus variable. 

bonus = 1200.0 

# Calculate the total pay by adding salary 

# and bonus. Assign the result to pay. 

pay = salary + bonus 

# Display the pay. 

print ' Your pay is ' , pay 

Program Output 
Your pay is 3700.0 

Line 2 assigns 2500.0 to the s a l a r y  variable, and line 5 assigns 1200.0 to the bonus  vari- 
able. Line 9 assigns the result of the expression s a l a r y  + bonus  to the pay  variable. As 
you can see from the program output, the pay  variable holds the value 3700.0. 

nt would be writtr 

"A c..--. 

ill E 
an 



Be careful when dividing an integer by another integer. In Python, as well as many 
other languages, when an integer is divided by an integer the result will also be an inte- 
ger. This behavior is known as integer dzvision. For example, look at the following 
statement: 

number = 3 / 2 



2.7 Performing Calculations 53 

What value will the number reference after this statement executes? You would proba- 
bly assume that number would reference the value 1.5 because that's the result your 
calculator shows when you divide 3 by 2. However, that's not what will happen. 
Because the numbers 3 and 2 are both treated as integers, Python will throw away the 
fractional part of the result. (Throwing away the fractional part of a number is called 
truncation.) As a result, the statement will assign the value 1 to the number variable, 
not 1.5. 

If you want to make sure that a division operation yields a real number, at least one of the 
operands must be a number with a decimal point or a f l o a t  variable. For example, we 
could rewrite the statement as follows: 

number = 3 - 0  / 2 - 0  

Operator Precedence 

You can write statements that use complex mathematical expressions involving several 
operators. The following statement assigns the sum of 17, the variable x, 21, and the vari- 
able y to the variable answer.  

answer = 1 7  + x + 2 1  + y 

Some expressions are not that straightforward, however. Consider the following statement: 

outcome = 12 .0  + 6.0 / 3.0 

What value will be assigned to outcome? The number 6.0 might be used as an operand 
for either the addition or division operator. The outcome variable could be assigned 
either 6.0 or 14.0, depending on when the division takes place. Fortunately, the answer 
can be predicted because Python follows the same order of operations that you learned 
in math class. 

First, operations that are enclosed in parentheses are performed first. Then, when two oper- 
ators share an operand, the operator with the higher precedence is applied first. The prece- 
dence of the math operators, from highest to lowest, are: 

1. Exponentiation: * * 
2. Multiplication, division, and remainder: * 1 % 

3. Addition and subtraction: + - 
Notice that the multiplication (*), division (I), and remainder ( % )  operators have the same 
precedence. The addition (+) and subtraction (- ) operators also have the same precedence. 
When two operands with the same precedence share an operand, thegperators execute 
from left to right. 

Now, let's go back to the previous math expression: 

outcome = 12 .0  + 6.0 / 3.0 

The value that will be assigned to outcome is 14.0 because the division operator has a higher 
precedence than the addition operator. As a result, the division takes place before the 
addition. The expression can be diagrammed as shown in Figure 2-7. 



54 Chapter 2 Input, Processing, and Output 

FEgvse 2-7 Operator pecedence 

outcome = 12.0 

L,lj 
t 

outcome = 14.0 

Table 2-3 shows some other sample expressions with their values. 

Tahlc 2-3 Some exoressions 

Expression Value 

Parts of a mathematical expression may be grouped with parentheses to force some opera- 
tions to be performed before others. In the following statement, the variables a and b are 
added together, and their sum is divided by 4: 

r e s u l t  = (a + b) / 4 

Without the parentheses, however, b would be divided by 4 and the result added to a. 
Table 2-4 shows more expressions and their values. 

Tabie 2-4 More expressions and their values 

Expression Value 



2.7 Performinq Calculations 55 



In addition to the basic math operators for addition, subtraction, multiplication, and divi- 
sion, Python also provides an exponent operator and a remainder operator. Two asterisks 
written together (**)  is the exponent operator, and its purpose it to raise a number to a 
power. For example, the following statement raises the l e n g t h  variable to the power of 2 
and assigns the result to the a r e a  variable: 

area = length**2 

In Python, the % symbol is the remainder operator. (This is also known as the modulus 
operator.) The remainder operator performs division, but instead of returning the quotient, 
it returns the remainder. The following statement assigns 2 to l e f t o v e r :  

leftover = 17 % 3 

This statement assigns 2 to l e f t o v e r  because 17 divided by 3 is 5 with a remainder of 2. 
You will not use the remainder operator frequently, but it is useful in some situations. It is 
commonly used in calculations that detect odd or even numbers, determine the day of the 
week, measure the passage of time, and other specialized operations. 

You probably remember from algebra class that the expression 2xy is understood to mean 
2 times x times y. In math, you do not always use an operator for multiplication. Python, 
as well as other programming languages, requires an operator for any mathematical oper- 
ation. Table 2-5 shows some algebraic expressions that perform multiplication and the 
equivalent programming expressions. 

Te5le 2-5 Algebraic expressions 

Algebraic Expression Operation Being Performed Programming Expression 

66 6 times B 6 * B  

(3)(12) 3 times 12 3 * 1 2  

~ X Y  4  times x  times y 4 * x * y  

When converting some algebraic expressions to programming expressions, you may have 
to insert parentheses that do not appear in the algebraic expression. For example, look at 
the following formula: 



2.7 Performing Calculations 57 

To convert this to a programming statement, a + b will have to be enclosed in parentheses: 

x = ( a + b )  / c  

Table 2-6 shows additional algebraic expressions and their Python equivalents. 

Tabtie 2-64 Algebraic and programming expressions 

Algebraic Expression Python Statement 

le named ra t e ,  a] 

~u *odd 
ake that 1 

amber of 
the amoz 
. . .. .̂. .11 



Data Type Conversion 

When you perform a math operation on two operands, the data type of the result will 
depend on the data type of the operands. Python follows these rules when evaluating math- 
ematical expressions: 

When an operation is performed on two int values, the result will be an int. 
When an operation is performed on two float values, the result will be a float. 



2.7 Performing Calculations 59 

When an operation is performed on an i n t  and a f l o a t ,  the i n t  value will be tem- 
porarily converted to a f l o a t  and the result of the operation will be a f l o a t .  (An 
expression that uses an i n t  and a f l o a t  is called a mixed-type expression.) 

The first two situations are straightforward: operations on i n t s  produce i n t s ,  and oper- 
ations on f l o a t s  produce f l o a t s .  Let's look at an example of the third situation, which 
involves mixed-type expressions: 

my-number = 5 * 2.0 

When this statement executes, the value 5 will be converted to a f l o a t  (5.0) and then mul- 
tiplied by 2.0. The result, 10.0, will be assigned to my-number. 

The i n t  to f l o a t  conversion that takes place in the previous statement happens implicitly. 
In some situations, you want to explicitly make sure that a value is converted to a specific 
type.'For example, look at Program 2-18. 

Program 2-18 (books-per-month1 .py) 

# Get the number of books the user plans to read. 
books = input('How many books do you want to read? ' )  

# Get the number of months it will take to read them. 
months = input('How many months will it take? ' ) 

# Calculate the number of books per month. 
per-month = books / months 

# Display the result. 
print 'You will read', per-month, 'books per month.' 

Proaram Outout (with i n ~ u t  shown in bold) 

H O ~  D [Enter] 
How many montns WILL ~t taKei fi !"n~e'' 

You will read 2 books per montl 

This program asks the user for the number of books he or she pians to read, and the num- 
ber of months it will take to read them. Line 8 divides books by months to calculate the 
number of books that the user must read per month. However, if the user has entered inte- 
ger values for both books and months, this statement will perform integer division. This 
was what happened in the sample output. If you want the result to be completely accurate, 
you need to make sure that at least one of the operands in the division operation is a f l o a t .  
We can do that with Python's built-in f l o a t  ( ) function, as shown in Program 2-19. 

Program 2-19 (books-per-month2.p~) 

1 # Get the number of books the user plans to read. 
% books = input( 'How many books do you want to read? ' ) 

(program continues) 



60 Chapter 2 Input, Processing, and Output 

(continued) 

3 

4 # Get the number of months it will take to read them. 
5 months = input('How many months will it take? ' )  

6 

7 # Calculate the number of books per month. 

8 per-month = float(books) / months 
9 

10 # Display the result. 
11 print 'You will read' , per-month, 'books per month. ' 

In line 8 the expression f l o a t  ( b o o k s )  converts the value referenced by books to a 
f l o a t .  This ensures that when the division takes place, one of the operands will be a 
f l o a t ,  thus preventing integer division. 

WARN IN  G ! Notice that in line 8 of Program 2-19, we did not put the entire expres- 
sion books / months inside the parentheses of the f l o a t  function, as shown here: 

per-month = float(books / months) 

This statement does not convert the value in books or months to a f l o a t ,  but con- 
verts the result of the expression books / months. If this statement were used in the 
program, an integer division operation would still have been performed. Here's why: 
The result of the expression books / months is 2 (because integer division takes 
place). The value 2 converted to a f l o a t  is 2.0. To prevent the integer division from 
taking place, one of the operands must be converted to a f l o a t .  

Python also has a built-in i n t  ( ) function that converts a value to an i n t .  When a f l o a t  
is converted to an i n t ,  any fractional part is thrown away, or truncated. Here is an example: 

After this code executes, the variable y will be assigned 27. Here is an example showing the 
i n t  function converting a negative f l o a t  value: 

x = -12.9 

y = int(x) 

After this code executes, y will be assigned -12. 



2.7 Performing Calculations 61 

Most programming statements are written on one line. If a programming statement is too 
long, however, you will not be able to view all of it in your editor window without scroll- 
ing horizontally. In addition, if you print your program code on paper and one of the state- 
ments is too long to fit on one line, it will wrap around to the next line and make the code 
difficult to read. 

Python allows you to break a statement into multiple lines by using the line continuation 
character, which is a backslash ( \ ) .  You simply type the backslash character at the point 
you want to break the statement, and then press the Enter key. Here is a p r i n t  statement 
that is broken into two lines with the line continuation character: 

print 'We sold', units-sold, \ 
'for a total of', sales-amount 

The line continuation character that appears at the end of the first line tells the interpreter 
that the statement is continued on the next line. Here is a statement that performs a math- 
ematical calculation and has been broken up to fit on two lines: 

result = varl * 2 + var2 * 3 + \ 
var3 * 4 + var4 * 5 

Here is one last example: 

print "Monday's sales are", monday, \ 
"and Tuesday's sales are", tuesday, \ 
"and Wednesday's sales are", wednesday 

This long p r i n t  statement is broken into three lines. Notice that the first two lines end 
with a backslash. 

*d %-A- Checkpoint 

2.19 Complete the following table by writing the value of each expression in the 
Value column. 

Expression 

6 + 3 * 5  

1 2 / 2 - 4  

9 + 1 4 * 2 - 6  

(6 + 2) * 3 
14 / (11 - 4) 
9 + 12 * (8 - 3) 
float(9) / 2 

float(9 / 2) 

int(9.0 / 3.0) 

Value 



62 Chapter 2 Input, Processing, and Output 

2.20 What value will be assigned to r e s u l t  after the following statement executes? 

result = 9 / 2 

2.21 What value will be assigned to r e s u l t  after the following statement executes? 

result = 9 % 2 

More About Data Output 
So far we have discussed only basic ways to display data. Eventually, you will want to exer- 
i cise more control over the way data appear on the screen. In this section, you will learn 

more details about the Python p r i n t  statement, and you'll see techniques for formatting 
output in specific ways. 

Suppressing the pr int  Statement" Newlime 
The p r i n t  statement normally displays a line of output. For example, the following three 
print statements will produce three lines of output: 

print ' One ' 
print ' Two ' 
print ' Three ' 

Each of the p r i n t  statements shown here displays a string and then prints a newline char- 
acter. You do not see the newline character, but when it is displayed, it causes the output 
to advance to the next line. (You can think of the newline character as a special command 
that causes the computer to start a new line of output.) 

If you do not want the p r i n t  statement to start a new line of output when it finishes display- 
ing its output, you can write a trailing comma at the end of the statement, as shown here: 

print ' One ' , 
print ' Two ' , 
print ' Three ' 

Notice that the first two p r i n t  statements end with a comma. The trailing commas prevent 
these two p r i n t  statements from displaying a newline character at the end of their output. 
Instead, they display a space at the end of their output. Here is the output of these statements: 

One Two Three 

Escape Characters 
An escape character is a special character tha; is preceded with a backslash (\), appearing 
inside a string literal. When a string literal that contains escape characters is printed, the 
escape characters are treated as special commands that are embedded in the string. 

For example, \ n  is the newline escape character. When the \ n  escape character is printed, 
it isn't displayed on the screen. Instead, it causes output to advance to the next line. For 
example, look at the following statement: 

print 'One\nTwo\nThreel 



2.8 More About Data Output 63 

When this statement executes, it displays 

One 

Two 

Three 

Python recognizes several escape characters, some of which are listed in Table 2-7. 

Tabla? 2-7 Some of Python's escape characters 

Escape Character Effect 

\ n Causes output to be advanced to the next line. 

\t Causes output to skip over to the next horizontal tab position. 

\ ' Causes a single quote mark to be printed. 

Causes a double quote mark to be printed. 

Causes a backslash character to be printed. 

The \t escape character advances the output to the next horizontal tab position. (A tab posi- 
tion normally appears after every eighth character.) The following statements are illustrative: 

print 'Mon\tTues\tWedl 

print 'Thur\tFri\tSatl 

This statement prints Monday, then advances the output to the next tab position, then 
prints Tuesday, then advances the output to the next tab position, then prints Wednesday. 
The output will look like this: 

Mon Tues Wed 

Thur Fri Sat 

You can use the \ and \ "  escape characters to display quotation marlzs. The following 
statements are illustrative: 

print "Your assignment is to read \"Hamlet\" by tomorrow." 

print ' I\ 'm ready to begin. ' 

These.statements display the following: 

Your assignment is to read "Hamlet" by tomorrow. 

I 'm ready to begin. 

You can use the \\ escape character to display a backslash, as shown in the following: 

print 'The path is C:\\temp\\data.' 

This statement will display 

The path is C:\temp\data. 

Displaying Mufttple i tems with t h e  + Operator 
Earlier in this chapter, you saw that the + operator is used to add two numbers. When 
the + operator is used with two strings, however, it performs string concatenation. 



64 Chapter 2 Input, Processing, and Output 

This means that it appends one string to another. For example, look at the following 
statement: 

print 'This is ' + 'one string. ' 

This statement will print 

This is one string. 

String concatenation can be useful for breaking up a string literal so a long p r i n t  state- 
ment can span multiple lines. Here is an example: 

print 'Enter the amount of ' + \ 
'sales for each day and ' + \ 
'press Enter. ' 

This statement will display the following: 

Enter the amount of sales for each day and press Enter. 

FormattOmg Numbers 
You might not always be happy with the way that numbers, especially floating-point num- 
bers, are displayed on the screen. When a floating-point number is displayed by the p r i n t  
statement, it can appear with up to 12 significant digits. This is shown in the output of 
Program 2-20. 

Program 2-20 (no-f0rrnatting.p~) 

1 # This program demonstrates how a floating-polnt 
2 # number is displayed with no formatting. 
3 amount-due = 5000.0 

4 monthly-payment = amount-due / 12.0 
5 print 'The monthly payment is', monthly-payment 

Program Output 

The monthly payment is 4 1 6 . 6 6 6 6 6 6 6 6 7  

Because this program displays a dollar amount, it would be nice to see that amount rounded 
to two decimal places. Fortunately, Python gives us a way to do just that with the string 
format operator. 

You previously learned that the % symbol is the' remainder operator. That's true when both of 
its operands are numbers. When the operand on the left side of the % symbol is a string, how- 
ever, it becomes the string format operator. Here is the general format of how we can use the 
string format operator with the p r i n t  statement to format the way a number is displayed: 

print string % number 

In the general format, string is a string that contains text and/or a formatting specifier. 
A formatting specifier is a special set of characters that specify how a value should be 



2.8 More About Data Output 65 

formatted. In the general format, number is a variable or expression that gives a numeric value. 
The value of number will be formatted according to the formatting specifier in the s t r i n g .  
Here is an example: 

my-value = 7.23456 

print 'The value is %. 2fT % my-value 

Figure 2-8 points out the important parts of the p r i n t  statement. In the p r i n t  statement, 
the formatting specifier is % . 2  f  . When the statement executes, % . 2  f will not be displayed. 
Instead, the value referenced by my - v a l u e  will be displayed in place of % . 2 f .  Here is the 
way the output will appear: 

The value is 7.23 

The f  in the formatting specifier indicates that we want to display a floating-point number. 
The .2 that appears before the f indicates that the number should be rounded to two dec- 
imal places. Program 2-21 shows how we can modify Program 2-20 so that it formats its 
output using this technique. 

Figure 2-8 Using the string format operator 

String format operator 
I 

r The number to 
be formatted 

p r i n t  'The  v a l u e  i s  

Format specifier 

Program 2-21 (f0rrnatting.p~) 

I # This program demonstrates how a floating-point 
2 # number can be formatted. 
3 amount-due = 5000.0 

4 monthly-payment = amount-due / 12.0 
5 print 'The monthly payment is %.2f1 % monthlypayment 

' .  

Program Output 

The monthly payment is 416.67 

You can round values to other numbers of decimal places. For example, the formatting spec- 
ifier %. 3f specifies three decimal places, and %. 6 f  specifies six decimabplaces. In Program 
2-22, a value is displayed rounded to one, two, three, four, five, and six decimal places. 

I # This program demonstrates how a value can be 
2 # formatted, rounded to different numbers of 

(program continues) 



66 Chapter 2 Input, Processing, and Output 

(continued) 

# decimal places. 
my-value = 1.123456789 

print '%.lf' % my-value # Rounded to 1 decimal place 
print '%.2f1 % my-value # Rounded to 2 decimal places 
print '%.3f1 % my-value # Rounded to 3 decimal places 
print ' %. 4f ' % my-value # Rounded to 4 decimal places 

print ' %. 5f ' % my-value # Rounded to 5 decimal places 
print ' % .  6f' % my-value # Rounded to 6 decimal places 

Program Output 

1.1 

1.12 

1.123 

1.1235 

1.12346 

1.123457 

Formatting Multiple Values 

The previous examples show how to format one value with the string formatting operator. 
You can format several values, using the following general format: 

print string % (number, number, . . . ) 
In the general format, s t r i n g  is a string that contains multiple formatting specifiers. 
(number, number, ...) is a list of variables or expressions enclosed in parentheses and sep- 
arated by commas. The first value or expression in this list will be formatted according to 
the first formatting specifier in s t r i n g ,  the second value or expression will be formatted 
according to the second formatting specifier in s t r i n g ,  and so forth. Here is an example: 

valuel = 6.7891234 

value2 = 1.2345678 

print 'The values are %. lf and %. 3f' % (valuel, value2) 

In the p r i n t  statement, the %. If formatting specifier corresponds to the v a l u e 1  vari- 
able and the % .3f formatting specifier corresponds to the v a l u e 2  variable. When the code 
runs, it will produce the following output: 

The values are 6.8 and 1.235 

Specifying a Minimum Field Width 

A formatting specifier can also include a minimum field width, which is the minimum num- 
ber of spaces that should be used to display the value. 

my - value = 1.123456789 

print 'The value is : %6.2f ' % my-value 



2.8 More About Data Output 67 

In the p r i n t  statement, the formatting specifier is %6.2 f .  The 6 specifies that the number 
of spaces reserved on the screen for the value should be a minimum of 6. The output of the 
statement will be 

The value is: 1.12 

In this case, the number that is displayed is shorter than the field that it is displayed in. The 
number 1.12 uses only four spaces on the screen, but it is displayed in a field that is six spaces 
wide. When this is the case, the number will be right justified in the field. If a value is too large 
to fit in the specified field width, the field is automatically enlarged to accommodate it. 

Field widths can help when you need to print values aligned in columns. For example, look 
at Program 2-23. Each of the variables is displayed in a field that is seven spaces wide, 

Program' 2-23 (columns.py) 

# This program displays the following 
# floating-point numbers in a column 

# with their decimal points aligned. 
numl = 127.899 

num2 = 3465.148 

num3 = 3.776 

num4 = 264.821 

num5 = 88.081 

num6 = 799.999 

# Display each number in a field of 7 spaces 
# with 2 decimal places. 
print ' %7.2f ' % numl 

print '%7.2f1 % num2 

print '%7.2f1 % num3 

print '%7.2f1 % num4 

print '%7.2f1 % num5 

18 print '%7.2f1 % num6 

Program Output 

127.90 

3465.15 

3.78 

264.82 

88.08 

800.00 

Formatting Integers and Strings 

In addition to floating-point values, Python provides formatting specifiers for integers and 
strings. For example, the following code shows how to use the %d formatting specifier to 
format an integer: 

hours = 40 
print 'I worked %d hours this week.' % hours 



68 Chapter 2 Input, Processing, and Output 

This code will display the following: 

I worked 40 hours this week. 

Here is an example that formats two integer values: 

dogs = 2 

cats = 3 

print 'We have %d dogs and %d cats. ' % (dogs, cats ) 

This code will display 

We have 2 dogs and 3 cats. 

Here is an example of how the %s formatting specifier can be used to format a string: 

name = 'Ringo' 
print 'Hello %s. Good to see you! ' % name 

This code will display the following: 

Hello Ringo. Good to see you! 

The following example shows how a string and a floating-point number can be formatted 
in the same statement: 

day = 'Monday' 

sales = 8450.55 

print 'The sales on %s were $ %  .2f. ' % (day, sales) 

The output is 

The sales on Monday were $8450.55. 

You can also apply minimum field widths to the %d and % s formatting specifiers. For exam- 
ple, Program 2-24 prints a series of salesperson names and units sold in two columns. Each 
column uses a field width of 15 spaces. 

1 # This program displays a set of salesperson 
2 # names and units sold in two columns. 
3 

4 # Assign the names to variables. 

5 salesperson1 = 'Graves' 

6 salesperson2 = 'Harrison' 

7 salesperson3 = 'Hoyle' 

8 salesperson4 = 'Kramer' 

9 salesperson5 = 'Smith' 

10 
11 # Assign the units sold to variables. 

12 units1 = 1456.78 

13 units2 = 2890.55 

14 units3 = 946.77 

15 units4 = 2678.91 



2.8 More About Data Output 69 

16 units5 = 1287.87 

17 

18 # Display the data. 

19 print '%15s %15s1 % ('Salesperson', 'Units Sold') 

20 print '%15s %15d1 % (salespersonl, unitsl) 

21 print '%15s %15d1 % (salesperson2, units2) 

22 print '%15s %15d1 % (salesperson3, units3) 

23 print '%15s %15d1 % (salesperson4, units4) 

24 print '%15s %15d1 % (salesperson5, units5) 

Program Output 
Salespersc Units Sold 

Grz 1456 

Hal 2890 

Hal 946 
Kr i 2678 

Smj 1287 

educe in( 
syntax 
hardwar 

prerequi: 
predicate 
.. \ 
111 - 

k. 
logarithn 

logic sch~ 
algorithn 

















1 3.1 Introduction to Functions 3.4 Local Variables 
1 3.2 Defining and Calling a Function 3.5 Passing Arguments to Functions 
1 3.3 Designing a Program to Use Functions 3.6 Global Variables and Global Constants 
I 

L CONCEPT: A function is a group of statements that exist within a program for the 
purpose of performing a specific task. 

In Chapter 2 we described a simple algorithm for calculating an employee's pay. In the algo- 
rithm, the number of hours worked is multiplied by an hourly pay rate. A more realistic 
payroll algorithm, however, would do much more than this. In a real-world application, the 
overall task of calculating an employee's pay would consist of several subtaslts, such as the 
following: 

Getting the employee's hourly pay rate 
Getting the number of hours worked 
Calculating the employee's gross pay 
Calculating overtime pay 

0 Calculating withholdings for taxes and benefits 
Calculating the net pay 
Printing the paycheck 

Most programs perform tasks that are large enough to be broken down into several sub- 
tasks. For this reason, programmers usually break down their programs into small manage- 
able pieces known as functions. A function is a group of statements that exist within a pro- 
gram for the purpose of performing a specific task. Instead of writing a large pro, oram as 
one long sequence of statements, it can be written as several small functions, each one per- 
forming a specific part of the task. These small functions can then be executed in the desired 
order to perform the overall task. 



78 Chapter 3 Simple Functions 

This approach is sometimes called divide and conquer because a large task is divided into 
several smaller tasks that are easily performed. Figure 3-1 illustrates this idea by compar- 
ing two programs: one that uses a long complex sequence of statements to perform a task, 
and another that divides a task into smaller tasks, each of which is performed by a sepa- 
rate function. 

When using functions in a program, you generally isolate each task within the program in 
its own function. For example, a realistic pay calculating program might have the follow- 
ing functions: 

A function that gets the employee's hourly pay rate 
A function that gets the number of hours worked 
A function that calculates the employee's gross pay 
A function that calculates the overtime pay 
A function that calculates the withholdings for taxes and benefits 
A function that calculates the net pay 
A function that prints the paycheck 

Figure 3-1 Using functions to divide and conquer a large task 

In this program the task has been 
This program is one long, complex divided into smaller tasks, each of which 

sequence of statements. is performed by a separate function. 

statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 
statement 

Benefits of Using Functions 
A program benefits in the following ways when it is broken down into functions: 



3.2 Defining and Calling a Function 

Simpler Code 

A program's code tends to be simpler and easier to understand when it is broken down into 
functions. Several small functions are much easier to read than one long sequence of statements. 

Code Reuse 

Functions also reduce the duplication of code within a program. If a specific operation is 
performed in several places in a program, a function can be written once to perform that 
operation, and then be executed any time it is needed. This benefit of using functions is 
known as code reuse because you are writing the code to perform a task once and then 
reusing it each time you need to perform the task. 

Better Testing 

When each task within a program is contained in its own function, testing and debugging 
becomes simpler. Programmers can test each function in a program individually, to deter- 
mine whether it correctly performs its operation. This makes it easier to isolate and fix 
errors. 

Faster Development 

Suppose a programmer or a team of programmers is developing multiple programs. They 
discover that each of the programs perform several common tasks, such as asking for a 
username and a password, displaying the current time, and so on. It doesn't make sense 
to write the code for these tasks multiple times. Instead, functions can be written for the 
commonly needed tasks, and those functions can be incorporated into each program that 
needs them. 

Easier Facilitation of Teamwork 

Functions also make it easier for programmers to work in teams. When a program is devel- 
oped as a set of functions that each performs an individual task, then different program- 
mers can be assigned the job of writing different functions. 

Checkpoint 

3.1 What is a function? 

3.2 What is meant by the phrase "divide and conquer?" 

3.3 How do functions help you reuse code in a program? 

3.4 How can functions make the development of multiple programs faster? 

3.5 How can functions make it easier for programs to be developed by teams of 
% programmers? 

!- CONCEPT: The code for a function is known as a function definition. To execute the 
function, you write a statement that calls it. 



80 Chapter 3 Simple Functions 

F u n ~ t i ~ n  Names 
Before we discuss the process of creating and using functions, we should mention a few 
things about function names. Just as you name the variables that you use in a program, you 
also name the functions. A function's name should be descriptive enough so that anyone 
reading your code can reasonably guess what the function does. 

Python requires that you follow the same rules that you follow when naming variables, 
which we recap here: 

You cannot use one of Python's key words as a function name. (See Table 1-2 for a 
list of the key words.) 
A function name cannot contain spaces. 
The first character must be one of the letters a through z, A through Z, or an under- 
score character (-). 
After the first character you may use the letters a through z or A through Z, the dig- 
its 0 through 9, or underscores. 
Uppercase and lowercase characters are distinct. 

Because functions perform actions, most programmers prefer to use verbs in function 
names. For example, a function that calculates gross pay might be named c a l c u l a t e -  
g r o s s  pay. This name would make it evident to anyone reading the code that the 
function calculates something. What does it calculate? The gross pay, of course. Other 
examples of good function names would be get- hour s, get- pay- rate, c a l c u l a t e -  
ove r t ime ,  pr in t -check,  and so on. Each function name describes what the function 
does. 

Defining and CaB!Sng a Function 
To create a function you write its definition. Here is the general format of a function defi- 
nition in Python: 

def function-name( ) : 

statement 

statement 

etc. 

The first line is known as the function header. It marks the beginning of the function defi- 
nition. The function header begins with the key word d e f y  followed by the name of the 
function, followed by a set of parentheses, followed by a colon. 

Beginning at the next line is a set of statements known as a block. A block is simply a set 
of statements that belong together as a group. These statements are performed any time the 
function is executed. Notice in the general format that all of the statements in the block are 
indented. This indentation is required because the Python interpreter uses it to tell where 
the block begins and ends. 

Let's look at an example of a function. Keep in mind that this is not a complete program. 
We will show the entire program in a moment. 



3.2 Defining and Calling a Function 81 

def message ( ) : 

print ' I am Arthur, ' 
print 'King of the Britons.' 

This code defines a function named message. The message function contains a block 
with two p r i n t  statements. Executing the function will cause these p r i n t  statements 
to execute. 

Calling a Function 

A function definition specifies what a function does, but it does not cause the function to 
execute. To execute a function, you must call it. This is how we would call the message 
function: 

message ( ) 

When a function is called, the interpreter jumps to that function and executes the state- 
ments in its block. Then, when the end of the block is reached, the interpreter jumps back 
to the part of the program that called the function, and the program resumes execution at 
that point. When this happens, we say that the function returns. To fully demonstrate how 
function calling works, we will look at Program 3-1. 

Program 3-1 (function-demo.py) 

1 # This program demonstrates a function. 
2 #First, we define a function namedmessage. 

3 def message ( ) : 

4 print 'I am Arthur,' 

5 print 'King of the Britons.' 

5 

7 # Call the message function. 

8 message() 

Program Output 

I am Arthur, 

King of the Britons. 

Let's step through this program and examine what happens when it runs. First, the inter- 
preter ignores the comments that appear in lines 1 and 2. Then, it read: the def statement 
in line 3. This causes a function named message to be created in memory, containing the 
block of statements in lines 4 and 5. (Remember, a function definition creates a function, 
but it does not cause the function to execute.) Next, the interpreter encounters the comment 
in line 7, which is ignored. Then it executes the statement in line 8, which is a function call. 
This causes the message function to execute, which prints the two lines of output. 
Figure 3-2 illustrates the parts of this program. 



82 Chapter 3 Simple Functions 

Figure 3-2 The function definition and the function call 

These statements cause 
the message function to 

be created. # This program demonstrates a function. 
# First, we define a function named message. 

print 'I am Arthur,' 
print 'King of the Britons.' 

# Call the message function. . message ( ) 

This statement calls 
the message function, 
causing it to execute. 

Program 3-1 has only one function, but it is possible to define many functions in a program. In 
fact, it is common for a program to have a main function that is called when the program starts. 
The main function then calls other functions in the program as they are needed. It is often said 
that the main function contains a program's mainline logic, which is the overall logic of the pro- 
gram. Program 3-2 shows an example of a program with two functions: main and message. 

Program 3-2 (two-functi0ns.p~) 

# This program has two functions. First we 

# define the main function. 
def main(): 

print ' I have a message for you. ' 
message ( ) 
print 'Goodbye!' 

# Next we define the message function. 
def message ( ) : 

print 'I am Arthur, ' 
print 'King of the Britons. ' 

# Call the main function. 

Program Output 

I have a message for you. 
I am Arthur, 
King of the Britons. 
Goodbye ! 

The definition of the main function appears in lines 3 through 6 ,  and the definition of the 
message function appears in lines 9 through 11. The statement in line 14 calls the main 
function, as shown in Figure 3-3 



3.2 Defining and Calling a Function 83 

The first statement in the main function is the p r i n t  statement in line 4. It displays the 
string ' I have a message f o r  you .Then, the statement in line 5 calls the message 
function. This causes the interpreter to jump to the message  function, as shown in Fig- 
ure 3-4 After the statements in the message function have executed, the interpreter returns 
to the main function and resumes with the statement that immediately follows the function 
call. As shown in Figure 3-5, this is the p r i n t  statement that displays the string Goodbye ! I .  

Figure 3-3 Calking the main function 

The interpreter jumps to 
the main function and 
begins executing the 

statements in its block. 

# This program has two functions. First we 
# define the main function. 

r def main ( )  : 
print 'I have a message for you. 
message ( )  

print 'Goodbye! ' 

# Next we define the message function. 
def message ( )  : 

print ' I am Arthur, ' 
print 'King of the Britons.' 

L # Call the main function. 
main ( )  

Figure! 3-4 Calling the message function 

# This program has two functions. First we 
# define the main function. 
def maln ( )  : 

print 'I have a message for you.' 
message ( )  

The interpreter jumps to 
the messaae function and 

/ print 'Goodbye ! 
begins executing the # Next we define the message function. 

statements in its block. def message0 : 
print 'I am Arthur,' 
print 'King of the Britons.' 

# Call the main function. 
main ( )  

Figure 3-5 The message function returns 

When the message 
function ends, the 

interpreter jumps back to 
the part of the program that 

called it, and resumes 
execution from that ~o in t .  

# This program has two functions. First we 
# define the main function. 
def main ( )  : 

print 'I have a message for you. 
message ( )  

print 'Goodbye!' 

# Next we define the message function 
def message ( )  : 

print 'I am Arthur, ' 
print 'King of the Britons.' 

# Call the main function. 
main ( )  



84 Chapter 3 Simple Functions 

That is the end of the main function, so the function returns as shown in Figure 3-6. There 
are no more statements to execute, so the program ends. 

Figure 3-6 The main function returns 

# This program has two functions. First we 
# define the main function. 
def main ( )  : 

print 'I have a message for you.' 
message ( )  

print 'Goodbye! ' 
I 

When the main function 
ends, the interpreter jumps 

back to the part of the 
program that called it. There 

NOTE: When a program calls a function, programmers commonly say that the 
control of the program transfers to that function. This simply means that the function 
takes control of the program's execution. 

# Next we define the message function. 
def message ( ) : 

print 'I am Arthur,' 
print 'King of the Britons.' 

are no more statements, so 
the program ends. 

In Python, each line in a block must be indented. As shown in Figure 3-7, the last indented 
line after a function header is the last line in the function's block. 

# call the main function, 
main ( )  

Figure 3-7 All of the statements in a block are indented 

The last indented line is 
the last line in the block. 

def greeting ( ,  : 
print 'Good morning!' 
print 'Today we will learn about functions.' 

These statements call the greeting function.' 
are not in the block. 

When you indent the lines in a block, make sure each line begins with the same number of 
spaces. Otherwise an error will occur. For example, the following function definition will 
cause an error because the lines are all indented with different numbers of spaces. 

def my-function(): 
print 'And now for' 

print 'something completely' 
print 'different.' 



3.3 Designing a Program to Use Functions 85 

In an editor there are two ways to indent a line: (1) by pressing the Tab key at the begin- 
ning of the line, or ( 2 )  by using the spacebar to insert spaces at the beginning of the line. 
You can use either tabs or spaces when indenting the lines in a block, but don't use both. 
Doing so may confuse the Python interpreter and cause an error. 

IDLE, as well as most other Python editors, automatically indents the lines in a block. 
When you type the colon at the end of a function header, all of the lines typed afterward 
will automatically be indented. After you have typed the last line of the block you press the 
Backspace key to get out of the automatic indentation. 

block. You can use any number of spaces you wish, as long as all the lines in the 

Checkpoint 

3.6 A function definition has what two parts? 

3.7 What does the phrase "calling a function" mean? 

3.8 When a function is executing, what happens when the end of the function's block 
is reached? 

3.9 Why must you indent the statements in a block? 

Designing a Program to Use Functions 

'- C 0 N C E PT: Programmers commonly use a technique known as top-down design to 
break down an algorithm into functions. 

In Chapter 2 we introduced flowcharts as a tool for designing programs. In a flowchart, a 
function call is shown with a rectangle that has vertical bars at each side, as shown in Fig- 
ure 3-8. The name of the function that is being called is written on the symbol. The example 
shown in Figure 2-8 shows how we would represent a call to the message function. 

Figure 3-8 Function call symbol 



86 Chapter 3 Simple Functions 

Programmers typically draw a separate flowchart for each function in a program. For exam- 
ple, Figure 3-9 shows how the main function and the message function in Program 3-2 
would be flowcharted. When drawing a flowchart for a function, the starting terminal sym- 
bol usually shows the name of the function and the ending terminal symbol usually reads 
R e t u r n .  

Ffqv-+ 3-9 Flo\/vchar: for Program 3-2 

message() 

Display ' I  am Arthur' 
message for you.' 

Display 'Goodbye!' m 
Return h 

I Display 'King of the 
Britons' / 

Return C 

In this section, we have discussed and demonstrated how functions work. You've seen how 
control of a program is transferred to a function when it is called, and then returns to the 
part of the program that called the function when the function ends. It is important that 
you understand these mechanical aspects of functions. 

Just as important as understanding how functions work is understanding how to design a 
program that uses functions. Programmers commonly use a technique known as top-down 
design to break down an algorithm into functions. The process of top-down design is per- 
formed in the following manner: 

The overall task that the program is to perform is broken down into a series of 
subtaslts. 
Each of the subtasks is examined to determine whether it can be further broken 
down into more subtasks. This step is repeated until no more subtasks can be 
identified. 
Once all of the subtasks have been identified, they are written in code. 



3.3 Designing a Program to Use Functions 

This process is called top-down design because the programmer begins by looking at the 
topmost level of tasks that must be performed, and then breaks down those tasks into lower 
levels of subtasks. 

Flowcharts are good tools for graphically depicting the flow of logic inside a function, but 
they do not give a visual representation of the relationships between functions. Programmers 
commonly use hierarchy charts for this purpose. A hierarchy chart, which is also known as 
a structure chart, shows boxes that represent each function in a program. The boxes are 
connected in a way that illustrates the functions called by each function. Figure 3-10 shows 
an example of a hierarchy chart for a hypothetical pay calculating program. 

Y E  3 -  A hierarchy char", 

main() 

The chart shown in Figure 3-9 shows the main function as the topmost function in the hierar- 
chy. The main function calls five other functions: g e t  - i n p u t ,  calc-gross-pay , calc-  
o v e r t i m e ,  c a l c  w i t h h o l d i n g s ,  and calc n e t  pay. The g e t  i n p u t  function 
calls two additionalfunctions: g e t  hours  worked a n d g e t  h o u r l y  G t e .  The calc - 
wi thho ld ings  function also calls L o  functions: c a l c  - t a x e s  and talc-benef its. 

Notice that the hierarchy chart does not show the steps that are taken inside a function. 
Because they do not reveal any details about how functions work, they do not replace flow- 
charts or pseudocode. 







"e?x3'vq Execu%Ban Untfi t he  User Presses Enter 

Sometimes you want a program to pause so the user can read information that has been 
displayed on the screen. When the user is ready for the program to continue execution, he 
or she presses the Enter key and the program resumes. In Python you can use the raw- input 
function to cause a program to pause until the user presses the Enter key. Line 7 in Program 
3-3 is an example: 

raw-input( 'Press Enter to see Step 1. ' ) 

This statement displays the prompt P r e s s  E n t e r  t o  see S t e p  1. ' and pauses until 
the user to presses the Enter key. The program also uses this technique in lines 10, 13, 
and 16. 



3.4 Local Variables 91 

Local Variables 

I- CONCEPT: A local variable is created inside a function and cannot be accessed by 
statements that are outside the function. Different functions can have 
local variables with the same names because the functions cannot see 
each other's local variables. 

Anytime you assign a value to a variable inside a function, you create a local variable. A 
local variable belongs to the function in which it is created, and only statements inside that 
function can access the variable. (The term local is meant to indicate that the variable can 
be used only locally, within the function in which it is created.) 

An error will occur if a statement in one function tries to access a local variable that belongs 
to another function. For example, look at Program 3-4. 

Program 3-4 (bad-local.py) 

1 # Definition of the main function. 

2 def main( ) : 

3 get-name() 

4 print 'Hello', name # This causes an error! 

5 

6 # Definition of the get-name function. 

7 def get-name ( ) : 

8 name = raw-input ( ' Enter your name : ' ) 
3 

10 # Call the main function. 

11 main() 

This program has two functions: main and g e t  name. In line 8 the name variable is 
assigned a value that is entered by the user. This statement is inside the g e t  - name func- 
tion, so the name variable is local to that function. This means that the name variable can- 
not be accessed by statements outside the get-name function. 

The main function calls the get-name function in line 3. Then, the p r i n t  statement in 
line 4 tries to access the name variable. This results in an error because the name vari- 
able is local to the get-name function, and statements in the main function cannot 
access it. 

9 

Scope and LocaB Variables 
A variable's scope is the part of a program in which the variable may be accessed. A vari- 
able is visible only to statements in the variable's scope. A local variable's scope is the func- 
tion in which the variable is created. As you saw demonstrated in Program 3-4, no state- 
ment outside the function may access the variable. 



92 Chapter 3 Simple Functions 

In addition, a local variable cannot be accessed by code that appears inside the function at 
a point before the variable has been created. For example, look at the following function. 
It will cause an error because the p r i n t  statement tries to access the val  variable, but this 
statement appears before the v a l  variable has been created. Moving the assignment state- 
ment to a line before the p r i n t  statement will fix this error. 

def bad-function(): 
print ' The value is ' , val # This will cause an error! 

val = 99 

Because a function's local variables are hidden from other functions, the other functions 
may have their own local variables with the same name. For example, look at the 
Program 3-5. In addition to the main function, this program has two other functions: 
texas and c a l i f o r n i a .  These two functions each have a local variable named 
b i r d s .  

1 # This program demonstrates two functions that 

2 # have local variables with the same name. 
3 

4 def main( ) : 

5 # Call the texas function. 
texas ( ) 
# Call the california function. 

californiao 

# Definition of the texas function. It creates 
# a local variable named birds. 

def texas(): 
birds = 5000  

print 'texas has', birds, 'birds.' 

# Definition of the california function. It also 
# creates a local variable named birds. 
def californiao: 

birds = 8000 

print 'california has', birds, 'birds.' 

# Call the main function. 
main ( ) 

Program Output 
texas has 5000 birds. 
california has 8000  birds. 



3.5 Passing Arguments to Functions 93 

Although there are two separate variables named birds in this program, only one of 
them is visible at a time because they are in different functions. This is illustrated in 
Figure 3-12. When the texas function is executing, the b i r d s  variable that is created 
in line 13 is visible. \Xihen the c a l i f o r n i a  function is executing, the b i r d s  variable 
that is created in line 19 is visible. 

r e  3-12 Each function has i t s  own bi rds  variable 

Checkpoint 

3.10 What is a local variable? How is access to a local variable restricted? 

3.11 What is a variable's scope? 

3.12 Is it permissible for a local variable in one function to have the same name as a 
local variable in a different function? 

Passing b 4 q ~ ~ s " m e ~ 3  --a 29 Pg:r.c%!ers 

CONCEPT: An argument is any piece of data that is passed into a fmction when the 
function is called. A parameter is a variable that receives an argument 
that is passed into a function. 

Sometimes it is useful not only to call a function, but also to send one or more pieces of 
data into the function. Pieces of data that are sent into a function are known as arguments. 
The function can use its arguments in calculations or other operations. 



94 Chapter 3 Simple Functions 

If you want a function to receive arguments when it is called, you must equip the function 
with one or more parameter variables. A parameter variable, often simply called a 
parameter, is a special variable that is assigned the value of an argument when a function 
is called. Here is an example of a function that has a parameter variable: 

def show-double(number): 

result = number * 2 
print result 

This function's name is show-double. Its purpose is to accept a number as an argument 
and display the value of that number doubled. Look at the function header and notice the 
word number that appear inside the parentheses. This is the name of a parameter variable. 
This variable will be assigned the value of an argument when the function is called. 
Program 3-6 demonstrates the function in a complete program. 

Program 3-6 (pass-arg. py) 

# This program demonstrates an argument being 
# passed to a function. 

def main ( ) : 

value = 5 

show-double(va1ue) 

# The show-double function accepts an argument 

# and displays double its value. 
def show-double(number): 

result = number * 2 
print result 

# Call the main function. 

main ( ) 

Program Output 
1 ( 

When this program runs, the main function is called in line 15. Inside the main function, 
line 5 creates a local variable named v a l u e ,  assigned the value 5. Then the following state- 
ment in line 6 calls the show-double function: 

Notice that v a l u e  appears inside the parentheses. This means that v a l u e  is being 
passed as an argument to the show-double function, as shown in Figure 3-13 When 
this statement executes, the show - d o u b l e  function will be called and the number 
parameter will be assigned the same value as the v a l u e  variable. This is shown in 
Figure 3-14. 



3.5 Passing Arguments to Functions 95 

%3ure 3-13 The v a l u e  variable is passed as an argument 

def main ( )  : 
value = 5 
show-double (value) 

I 

def show-double (number) : 
result = number * 2 
print result 

Figure 3-14 The v a l u e  variable and the number parameter refererlce t9e same value 

def main ( )  : 
value = 5 value 
~how~double (value) 

def show-double (number) : 
E l  

result = number * 2 number 
print result 

Let's step through the show-double function. As we do, remember that the number 
parameter variable will be assigned the value that was passed to it as an argument. In this 
program, that number is 5. 

Line 11 assigns the value of the expression number * 2 to a local variable named r e s u l t .  
Because number references the value 5 ,  this statement assigns 10 to r e s u l t .  Line 12 displays 
the r e s u l t  variable. 

The following statement shows how the show - d o u b l e  function can be called with a 
numeric literal passed as an argument: 

This statement executes the show - d o u b l e  function, assigning 50 to the number parame- 
ter. The function will print 100. 

9 

Parameter BJariable Scope 

Earlier in this chapter, you learned that a variable's scope is the part of the program in 
which the variable may be accessed. A variable is visible only to statements inside the 
variable's scope. A parameter variable's scope is the function in which the parameter is 
used. All of the statements inside the function can access the parameter variable, but no 
statement outside the function can access it. 





Often it's useful to write functions that can accept multiple arguments. Program 3-8 shows 
a function named show-sum, that accepts two arguments. The function adds the two argu- 
ments and displays their sum. 

i # This program demonstrates a function that accepts 

2 # two arguments. 
3 

4 def main( ) : 

5 print 'The sum of 12 and 45 is' 

(program continues) 



98 Chapter 3 Simple Functions 

Program 3-8 (continued) 

# The show-sum function accepts two arguments 
# and displays their sum. 

def show-sum(num1, num2): 

result = numl + num2 
print result 

# Call the main function. 

main ( ) 

Program Output 

The sum of 12 and 45 is 

5 7 

Notice that two parameter variable names, numl and num2, appear inside the parentheses 
in the show - sum function header. This is often referred to as a parameter list. Also notice 
that a comma separates the variable names. 

The statement in line 6 calls the show - sum function and passes two arguments: 12 and 45. 
These arguments are passed by position to the corresponding parameter variables in the func- 
tion. In other words, the first argument is passed to the first parameter variable, and the second 
argument is passed to the second parameter variable. So, this statement causes 12 to be assigned 
to the numl parameter and 45 to be assigned to the num2 parameter, as shown in Figure 3-16. 

Chqrge "2 S-LE6 TWO arguments passed to two parameters 

def maln  ( )  : 
p r l n t  'The sum o f  1 2  a n d  4 5  1s' 

d e f  show-sum (numl , num2) : 
r e s u l t  = numl + num2 
p r i n t  r e s u l t  

numl  - 
Suppose we were to reverse the order in which the arguments are listed in the function call, 
as shown here: 

This would cause 45 to be passed to the numl parameter and 12 to be passed to the num2 
parameter. The following code shows another example. This time we are passing variables 
as arguments. 



3.5 Passing Arguments to Functions 99 

When the show-sum function executes as a result of this code, the numl parameter will be 
assigned the value 2 and the num2 parameter will be assigned the value 3. 

Program 3-9 shows one more example. This program passes two strings as arguments to a 
function. 

# This program demonstrates passing two string 
# arguments to a function. 

def main(): 

f irst-name = raw-input( 'Enter your first name: ' ) 

last-name = raw-input('Enter your last name: ' )  

print 'Your name reversed is' 

reverse-name(first-name, last-name) 

def reverse-name(first, last): 
print last, first 

# Call the main function. 

main ( ) 

Program Output (with input shown in bold) 

Enter your first name: Matt [Enter] 
En kr?  

Yo 

H 0 

bqak8ng Changes to Parameters 

-When an argument is passed to a function in Python, the function parameter variable will 
reference the argument's value. However, any changes that are made to the parameter vari- 
able will not affect the argument. To demonstrate this look at Program 3-10. 

'3 

Program 3-10 (change-me.py) 

1 # This program demonstrates what happens when you 
2 # change the value of a parameter. 

3 

(program continues) 



100 Chapter 3 Simple Functions 

Program 3-1 0 (continued) 

def main ( ) : 
value = 99 

print ' The value is ' , value 
change-me(va1ue) 
print 'Back in main the value is', value 

def change-me(arg): 

print 'I am changing the value.' 

arg = 0 

print 'Now the value is ' , arg 

# Call the main function. 
main ( ) 

Program Output 

Thc is 99 

I i ying the value. 

No) slue is 0 

Back I n  main the value is 99 

The main function creates a local variable named v a l u e  in line 5, assigned the value 99. 
The p r i n t  statement in line 6 displays The v a l u e  i s  9 9  I .  The v a l u e  variable is then 
passed as an argument to the change-me function in line 7. This means that in the 
change m e  function the a r g  parameter will also reference the value 99. This is shown in 
Figure 3-17. 

Figure 3-87 The value variable is passed to the change-me function 

def main ( )  : 
value = 99 
print 'The value is', value 
changeme (value) value 
print 'Back in main the value is', value 

def change-me (arg) : 
print 'I am changing the value.' 
arg = 0 arg 

print 'Now the value is', arg 

Inside the change  m e  function, in line 12, the a r g  parameter is assigned the value 0. 
This reassignmentchanges a r g ,  but it does not affect the v a l u e  variable in main. 
As shown in Figure 3-18, the two variables now reference different values in memory. 
The p r i n t  statement in line 13 displays ' N o w  t h e  v a l u e  i s  0 ' and the function 
ends. 



3.5 Passing Arguments to Functions I01 

"8gure 3-18 The v a l u e  vasizble is passed to the change - m e  "nnctlon 

def main ( )  : 
value = 99 
print 'The value is', value 
change-me(va1ue) value 
print 'Back in main the value is', value 

def changeme (arg) : 
print 'I am changing the value.' 
arg = 0 

arg - 
print 'Now the value is', arg 

Control of the program then returns to the main function. The next statement to execute 
is the p r i n t  statement in line 8. This statement displays ' Back i n  main t h e  v a l u e  
i s  99 I .  This proves that even though the parameter variable a r g  was changed in the 
change - m e  function, the argument (the v a l u e  variable in main) was not modified. 

The form of argument passing that is used in Python, where a function cannot change the 
value of an argument that was passed to it, is commonly called pass by value. This is a way 
that one function can communicate with another function. The communication channel 
works in only one direction, however. The calling function can communicate with the called 
function, but the called function cannot use the argument to communicate with the calling 
function. In Chapter 6 you will learn how to write a function that can communicate with 
the part of the program that called it by returning a value. 

Keawsrd Arguments 

Programs 3-8 and 3-9 demonstrate how arguments are passed by position to parameter 
variables in a function. Most programming languages match function arguments and 
parameters this way. In addition to this conventional form of argument passing, the Python 
language allows you to write an argument in the following format, to specify which param- 
eter variable the argument should be passed to: 

In this format, parameter-name is the name of a parameter variable and value is the 
value being passed to that parameter. An argument that is written in accordance with this 
syntax is known as a keyword argument. 

Program 3-11 demonstrates keyword arguments. This program uses a function named 
show - i n t e r e s t  that displays the amount of simple interest earned by a bank account for 
'a number of periods. The function accepts the arguments p r i n c i p a l  (for the account prin- 
cipal), rate (for the interest rate per period), and p e r i o d s  (for the number of periods). 
When the function is called in line 7, the arguments are passed as keywo5d arguments. 

Program 3-1 1 (keyword-args.py) 

i # This program demonstrates keyword arguments. 
2 

3 def main( ) : 

4 # Show the amount of simple interest, using 0.01 as 
(program continues) 



102 Chapter 3 Simple Functions 

Program 3-1 1 (continued) 

# interest rate per period, 10 as the number of periods, 
# and $10,000 as the principal. 
show-interest(rate=O.Ol, periods=lO, principal=10000.0) 

# The show-interest function displays the amount of 
# simple interest for a given principal, interest rate 
# per period, and number of periods. 

def show-interest(principa1, rate, periods): 

interest = principal * rate * periods 
print 'The simple interest will be $%.2f.' % interest 

# Call the main function. 
main ( ) 

Program Output 

The simple interest will be $1000.00. 

Notice in line 7 that the order of the keyword arguments does not match the order of the 
parameters in the function header in line 13. Because a keyword argument specifies which 
parameter the argument should be passed into, its position in the function call does not matter. 

Program 3-12 shows another example. This is a variation of the s t r ing- args  program shown 
in Program 3-9. This version uses keyword arguments to call the reverse-name function. 

Program 3-1 2 (keyword-string-args.py) 

1 # This program demonstrates passing two strings as 
2 # keyword arguments to a function. 
3 

4 def main(): 

5 first-name = raw-input('Enter your first name: ' )  

6 last-name = raw-input('Enter your last name: ' )  

7 print ' Your name reversed is ' 

8 reverse-name(last=last-name, first=first-name) 

9 

10 def reverse-name(first, last): 
11 print last, first 

12 

13 # Call the main function. 
14 main() 



3.6 Global Variables and Global Constants PO3 

Mixing Keyword Arguments with Positional Arguments 

It is possible to mix positional arguments and keyword arguments in a function call, but 
the positional arguments must appear first, followed by the keyword arguments. Otherwise 
an error will occur. Here is an example of how we might call the show- in te res t  func- 
tion of Program 3-10 using both positional and keyword arguments: 

show - interest(10000.0, rate=0.01, periods=lO) 

In this statement, the first argument, 10000.0, is passed by its position to the p r i n c i p a l  
parameter. The second and third arguments are passed as keyword arguments. The follow- 
ing function call will cause an error, however, because a non-keyword argument follows a 
keyword argument: 

# This will cause an ERROR! 

sfiow-interest(1000.0, rate=0.01, 10) 

Checkpoint 

3.13 What are the pieces of data that are passed Into a functlon called? 

3.14 What are the variables that receive pieces of data in a function called? 

3.15 What is a parameter variable's scope? 

3.16 When a parameter is changed, does this affect the argument that was passed into 
the parameter? 

3.17 The following statements call a function named show-data. Which of the 
statements passes arguments by position, and which passes keyword arguments? 

Global VarlabBes and Global Canstants 

L- CONCEPT: A global variable is accessible to all the functions in a program file. 

You've learned that when a variable is created by an assignment statement inside a func- 
tion, the variable is local to that function. Consequently, it can be accessed only by statements 
inside the function that created it. When a variable is created by an assignment statement 
that is written outside all the functions in a program file, the variable is global. A global 

"variable can be accessed by any statement in the program file, including the statements in 
any function. For example, look at Program 3-13. 

Program 3-1 3 (globall .py) 

1 # Create a global variable. 

2 my-value = 10 

3 

4 # The show-value function prints 
5 # the value of the global variable. 

(program continues) 



104 Chapter 3 Simple Functions 

(continued) 

6 def show-value(): 

7 print my-value 

8 

9 # Call the show-value function. 

10 show-value ( ) 

Program Output 

1 0  

The assignment statement in line 2 creates a variable named my-value. Because this state- 
ment is outside any function, it is global. When the show-value function executes, the 
statement in line 7 prints the value referenced by my-value. 

An additional step is required if you want a statement in a function to assign a value to a 
global variable. In the function you must declare the global variable, as shown in Program 3-14. 

Program 3-14 (global2.p~) 

# Create a global variable. 

number = 0 

def main(): 

global number 

number = input ( ' Enter a number : ' ) 

show-number() 

def show-number(): 

print 'The number you entered is', number, 

# Call the main function. 

main ( ) 

Program Output (with input shown in bold) 

Enter a number: 55 [Enter] 
The number you entered is 55 

The assignment statement in line 2 creates a global variable named number. Notice that inside 
the main function, line 5 uses the g l o b a l  key word to declare the number variable. This state- 
ment tells the interpreter that the main function intends to assign a value to the global number 
variable. That's just what happens in line 6. The value entered by the user is assigned to number. 

Most programmers agree that you should restrict the use of global variables, or not use 
them at all. The reasons are as follows: 

Global variables make debugging difficult. Any statement in a program file can 
change the value of a global variable. If you find that the wrong value is being 



3.6 Global Variables and Global Constants 105 

stored in a global variable, you have to track down every statement that accesses it 
to determine where the bad value is coming from. In a program with thousands of 
lines of code, this can be difficult. 
Functions that use global variables are usually dependent on those variables. If you 
want to use such a function in a different program, most likely you will have to 
redesign it so it does not rely on the global variable. 
Global variables make a program hard to understand. A global variable can be mod- 
ified by any statement in the program. If you are to understand any part of the pro- 
gram that uses a global variable, you have to be aware of all the other parts of the 
program that access the global variable. 

In most cases, you should create variables locally and pass them as arguments to the func- 
tions that need to access them. 

Although you should try to avoid the use of global variables, it is permissible to use global 
constants in a program. A global constant is a global name that references a value that 
cannot be changed. Because a global constant's value cannot be changed during the pro- 
gram's execution, you do not have to worry about many of the potential hazards that are 
associated with the use of global variables. 

Although the Python language does not allow you to create true global constants, you 
can simulate them with global variables. If you do not declare a global variable with the 
global  key word inside a function, then you cannot change the variable's assignment 
inside that function. The following In the Spotlight section demonstrates how global 
variables can be used in Python to simulate global constants. 

~loyees. A 
; 5 perce 

,nother b 
nt of eac 

enefit is , 

:h emplo 
employel 
ses to th 

:. The co 
eir retire 

lmpany c 
ment pla 

vraruyn wants to wrlte a program tnat will calculate the company s contr~butlon LU a11 +z 
employ 
contribi 
for the 

ee's retirt 
ution for 
program: 

Get the 
Get the 

employee's 
amount of 

count for 
~yee's gro 

' a year. ! 
ss pay an 

She want 
d for the 

s the prc 
bonuses s 

show tht 
. Here is ; 

: amount 
-In algorit 

the contr 

I is show 

ibution f i  
n in Pro2 

Pr the bo 

;ram 3-1. 





Checkpoint 

3.18 What is the scope of a global variable? 

3.19, Give one good reason that you should not use global variables in a program. 

3.20 What is a global constant? Is it permissible to use global constants in a program? 

IC task is 
block 

function 
expressio 

iesign tec 
i benefit 1 

code reus 
divide an 
debuggin 
facilitatic 

initializat 
header 

:hnique t 
of using ! 
;e 
d conquc 

g 
In of tear 

ion 

tho 

:r 

nwork 

iction de 

, . 

L design 
dificatior 













4.1 The if Statement 
4.2 The if -else Statement 
4.3 Comparing Strings 
4.4 Nested Decision Structures and 

the if -elif -else Statement 

4.5 Logical Operators 
4.6 Boolean Variables 

t C 0 N C E PT: The i f  statement is used to create a decision structure, which allows a pro- 
gram to have more than one path of execution. The i f  statement causes 
one or more statements to execute only when a Boolean expression is true. 

A control structure is a logical design that controls the order in which a set of statements 
execute. So far in this book we have used only the simplest type of control structure: the 
sequence structure. A sequence structure is a set of statements that execute in the order that 
they appear. For example, the following code is a sequence structure because the statements 
execute from top to bottom. 

name = raw-input ( 'What is your name? ' ) 
age = input ( 'What is your age? ' ) 

print 'Here is the data you entered: ' 
print 'Name: ' , name 
print 'Age : ' , age 

Even in Chapter 3, where you learned about functions, each function contained a block of 
statements that are executed in the order that they appear. For example, the following func- 
tion is a sequence structure because the statements in its block execute in the order that they 
appear, from the beginning of the function to the end. 

def show-double(va1ue): 
result = value * 2 
print result 



114 Chapter 4 Decision Structures and Boolean Logic 

Although the sequence structure is heavily used in programming, it cannot handle every 
type of task. This is because some problems simply cannot be solved by performing a set of 
ordered steps, one after the other. For example, consider a pay calculating program that 
determines whether an employee has worked overtime. If the employee has worked more 
than 40 hours, he or she gets paid extra for all the hours over 40. Otherwise, the overtime 
calculation should be skipped. Programs like this require a different type of control struc- 
ture: one that can execute a set of statements only under certain circumstances. This can be 
accomplished with a decision structure. (Decision structures are also known as selection 
structures.) 

In a decision structure's simplest form, a specific action is performed only if a certain con- 
dition exists. If the condition does not exist, the action is not performed. The flowchart 
shown in Figure 4-1 shows how the logic of an everyday decision can be diagrammed as a 
decision structure. The diamond symbol represents a truelfalse condition. If the condition 
is true, we follow one path, which leads to an action being performed. If the condition is 
false, we follow another path, which skips the action. 

Ffgure 4-1 A simple decision structure 

In the flowchart, the diamond symbol indicates some condition that must be tested. In this 
case, we are determining whether the condition cold outside is true or false. If this con- 
dition is true, the action wear a coat is performed. If the condition is false, the action 
is skipped. The action is conditionally executed because it is performed only when a certain 
condition is true. 

Programmers call the type of decision structure shown in Figure 4-1 a single alternative 
decision structure. This is because it provides only one alternative path of execution. If the 
condition in the diamond symbol is true, we take the alternative path. Otherwise, we exit 
the structure. Figure 4-2 shows a more elaborate example, where three actions are taken 
only when it is cold outside. It is still a single alternative decision structure, because there 
is one alternative path of execution. 



4.1 The i f  Statement 115 

Figure 4-2 A decision structure iC1~7t oe1501-ms three actions ih it is cold outside 

P 

False 

In Python we use the if statement to write a single alternative decision structure. Here is 
the general format of the if statement: 

if condition: 
statement 

statement 

etc. 

For simplicity, we will refer to the first line as the i f  clause. The if clause begins with the 
word i f ,  followed by a c o n d i t i o n ,  which is an expression that will be evaluated as either 
true or false. A colon appears after the c o n d i t i o n .  Beginning at the next line is a block 
of statements. (Recall from Chapter 3 that all of the statements in a block must be consis- 

"tently indented. This indentation is required because the Python interpreter uses it to tell 
where the block begins and ends.) 

When the if statement executes, the c o n d i t i o n  is tested. If the c o n d i t i o n  is true, the 
statements that appear in the block following the if clause are executzd. If the condition 
is false, the statements in the block are skipped. 

As ~reviously mentioned, the if statement tests an expression to determine whether it is 
true or false. The expressions that are tested by the if statement are called Boolean 



116 Chapter 4 Decision Structures and Boolean Logic 

expressions, named in honor of the English mathematician George Boole. In the 1800s 
Boole invented a system of mathematics in which the abstract concepts of true and false 
can be used in computations. 

Typically, the Boolean expression that is tested by an i f  statement is formed with a 
relational operator. A relational operator determines whether a specific relationship 
exists between two values. For example, the greater than operator (>) determines 
whether one value is greater than another. The equal to operator (==) determines 
whether two values are equal. Table 4-1 lists the relational operators that are available 
in Python. 

Table 4 -8  Relational operators 

Operator Meaning 

> Greater than 

< Less than 

>= Greater than or equal to 

<= Less than or equal to 
-- -- Equal to 

! = Not equal to 

The following is an example of an expression that uses the greater than (>) operator to 
compare two variables, l e n g t h  and width:  

l e n g t h  > w i d t h  

This expression determines whether the value referenced by l e n g t h  is greater than the 
value referenced by width .  If l e n g t h  is greater than width ,  the value of the expression 
is true. Otherwise, the value of the expression is false. The following expression uses the 
less than operator to determine whether l e n g t h  is less than width:  

l e n g t h  < w i d t h  

Table 4-2 shows examples of several Boolean expressions that compare the variables x 
and y. 

Table 4-2 Boolean expressions using relational operators 

Expression Meaning 

Is x greater than y? 

x < Y Is x less than y? 

x >= y Is x greater than or equal to y? 

x <= y Is x less than or equal to y? 

x == Y Is x equal to y? 

x != y Is x not equal to y? 



4.1 The if Statement 117 

The >= and <= Operators 

Two of the operators, >= and <=, test for more than one relationship. The >= operator 
determines whether the operand on its left is greater than or equal to the operand on its 
right. The <= operator determines whether the operand on its left is less than or equal to 
the operand on its right. 

For example, assume the following: 

a is assigned 4 
b is assigned 6 
c is assigned 4 

These expressions are true: 

And these expressions are false: 

The == Operator 

The == operator determines whether the operand on its left is equal to the operand on its 
right. If the values referenced by both operands are the same, the expression is true. 
Assuming that a is 4, the expression a == 4 is true and the expression a == 2 is false. 

The != Operator 

The ! = operator is the not-equal-to operator. It determines whether the operand on its left 
is not'equal to the operand on its right, which is the opposite of the == operator. As before, 
assuming a is 4, b is 6 ,  and c is 4, both a ! = b and b ! = c are true because a is not 
equal to b and b is not equal to c. However, a ! = c is false because a is equal to c. 

Let's look at the following example of the i f  statement: sJ 

if sales > 50000: 
bonus = 500.0 

This statement uses the > operator to determine whether sales is greater than 50,000. If 
the expression sales > 50000 is true, the variable bonus is assigned 500.0. If the expres- 
sion is false, however, the assignment statement is skipped. Figure 4-3 shows a flowchart for 
this section of code. 



118 Chapter 4 Decision Structures and Boolean Logic 

Figure 4-3 Example decision structure 

The following example conditionally executes three statements. Figure 4-4 shows a flow- 
chart for this section of code. 

if sales > 50000: 
bonus = 500.0 

commission-rate = 0.12 

print 'You met your sales quota!' 

Figure 4-4 Example decision structure 

sales > 50000 

commission-rate 

I print 'You met 
your sales quota!' 



4.1 The if Statement 119 

The following code uses the 
expression b a l a n c e  == 0 
the expression will be false. 

== operator to determine whether two values are equal. The 
will be true if the b a l a n c e  variable is assigned 0. Otherwise 

if balance == 0: 

# Statements appearing here will 

# be executed only if balance is 

# equal to 0 .  

The following code uses the != operator to determine whether two values are not equal. 
The expression c h o i c e  ! = 5 will be true if the c h o i c e  variable does not reference the 
value 5. Otherwise the expression will be false. 

if choice != 5: 

. # Statements appearing here will 
# be executed only if choice is 

# not equal to 5. 



Program 4-1 is an example of a program that has a block inside a block. The main func- 
tion has a block (in lines 7 through 22), and inside that block the i f  statement has a block 
(in lines 21 through 22). This is shown in Figure 4-5. 

As you learned in Chapter 3, Python requires you to indent the statements in a block. When 
you have a block nested inside a block, the inner block must be further indented. As you 
can see in Figure 4-5, four spaces are used to indent the main function's block, and eight 
spaces are used to indent the i f  statement's block. 



4.2 The i f  - e lse  Statement 121 

r e  4 -  Nested blocks 

This is the main 
function's block. 

This is the if 
statement's block. 

# Call the main function. 
main ( )  

Checkpoint 

4.1 What is a control structure? 

4.2 What is a decision structure? 

4.3 What is a single alternative decision structure? 

4.4 What is a Boolean expression? 

4.5 What types of relationships between values can you test with relational operators? 

4.6 Write an i f  statement that assigns 0 to x if y is equal to 20. 

4.7 Write an i f  statement that assigns 0.2 to commission if sales is greater than or 
equal to 10000. 

The i ~ - - e i . ~ ~  $tazewcmp: 

i- CONCEPT: An i f  -else statement will execute one block of statements if its condi- 
tion is true, or another block if its condition is false. 

The previous section introduced the single alternative decision structure (the i f  statement), 
which has one alternative path of execution. Now we will look at the dual alternative deci- 
sion structure, which has two possible paths of execution-one path is taken if a condition 
is true, and the other path is taken if the condition is false. Figure 4-6 shows a flowchart 
for a dual alternative decision structure. 

The decision structure in the flowchart tests the condition t e m p e r a t u r e  < 40. If this con- 
dition is true, the statement p r i n t  "A l i t t l e  c o l d ,  i s n  ' t i t ?  ,, is performed. If the 
condition is false, the statement p r i n t  "Nice  w e a t h e r  we ' re having." is performed. 



122 Chapter 4 Decision Structures and Boolean Logic 

E3q~zrra 4-5 A dual alternative decision structure 

print "Nice weather print "A little cold, 

In code we write a dual alternative decision structure as an i f  -else statement. Here is the 
general format of the if-else statement: 

if condition: 
statement 

statement 

etc. 

else: 

statement 

statement 

etc. 

When this statement executes, the condition is tested. If it is true, the block of indented 
statements following the i f  clause is executed, and then control of the program jumps to 
the statement that follows the if-else statement. If the condition is false, the block of 
indented statements following the else clause is executed, and then control of the program 
jumps to the statement that follows the if-else statement. This action is described in 
Figure 4-7. 

Flgur2 4-7 Conditional execution in an if-else statement 

if c o n d i t i o n :  

If the condition is true, statement 
block of statements is statement 
executed. etc. 

e l s e :  
statement 

i f  c o n d i t i o n :  
statement 
statement 
etc. 

e l s e :  
If the condition is false, this r statement 

statement block of statements is statement 
Then, control jumps here, etc. executed. etc. 
to the statement following 
the if - e l s e  statement. Then, control jumps here, ----+ 

to the statement following 
the i f - e l s e  statement. 



4.2 The if -else Statement 123 

The following code shows an example of an if -else statement. This code matches the 
flowchart that was shown in Figure 4-5. 

if temperature < 40: 
print "A little cold, isn't it?" 

else: 
print "Nice weather we're having." 

indentalion in the  if-else Sgatemen2 

When you write an if -else statement, follow these guidelines for indentation: 

Make sure the if clause and the e lse clause are aligned. 
The i f  clause and the e lse clause are each followed by a block of statements. Make 

' sure the statements in the blocks are consistently indented. 

This is shown in Figure 4-8. 

Figure 4-8 !ndentation with an if -else statement 

if temperature < 40: 
Align the if and 

......,... ,prlnf -.,rtl. .rt. seeeecc6;TTdd ;.-- iiSSnn .?'".....' 1- -.--- < /print else clauses. "Turn up the heat!" 
............................................................................... ;> The statements in each 

!.py.2.fi.c.. nni .E6...v6.s.tx.6.F..~~.T.F~.K2.~. .EG.+.,,.i 
block must be indented 
consistentlv. 

iprint "Pass the sunscreen." .......................................................................... 

lgorithm: 

en call eil 
1 to calcu 





9 

pk Checkpoint use the word filer as manuscript 

4.8 How does a dual alternative decision structure work? 

4.9 What statement do you use in Python to write a dual alternative decision 
structure? 

4.10 When you write an if-else statement, under what circumstances do the 
statements that appear after the else clause execute? 



126 Chapter 4 Decision Structures and Boolean Logic 

- CONCEPT: Python allows you to compare strings. This allows you to create decision 
structures that test the value of a string. 

You saw in the preceding examples how numbers can be compared in a decision structure. 
You can also compare strings. For example, look at the following code: 

namel = 'Mary' 
name2 = 'Mark' 
if namel == name2: 

print ' The names are the same. ' 

else: 
print 'The names are NOT the same. ' 

The == operator compares name1 and name2 to determine whether they are equal. 
Because the strings 'Mary' and 'Mark' are not equal, the else clause will display the 
message ' The names a r e  NOT t h e  same. ' 

Let's look at another example. Assume the month variable references a string. The follow- 
ing code uses the ! = operator to determine whether the value referenced by month is not 
equal to ' October  ' . 

if month ! = ' October ' : 
print 'This is the wrong time for Octoberfest!' 

Program 4-3 is a complete program demonstrating how two strings can be compared. The 
program prompts the user to enter a password and then determines whether the string 
entered is equal to p r o s p e r o  . 

(password. py) 

1 # This program demonstrates how the == operator can 
2 # be used to compare strings. 

3 

4 def main( ) : 

5 # Get a password from the user. 
6 password = raw-input('Enter the password: ' )  

7 

8 # Determine whether the correct password 
9 # was entered. 
10 if password == ' prospero' : 
11 print 'Password accepted.' 
12 else : 

13 print 'Sorry, that is the wrong password.' 
14 

15 # Call the main function. 
16 main() 



4.3 Comparing Strings 127 

or ong passw 

ter the 
ssword 

passwo 

accepte 

String comparisons are case sensitive. For example, the strings ' s a t u r d a y  and 
' S a t u r d a y '  are not equal because the " s "  is lowercase in the first string, but uppercase 
in the second string. The following sample session with Program 4-3 shows what happens 
when the user enters Prospero as the password (with an uppercase P). 

Program Output (with input shown in bold) 

Enter the password: Prospero [Enter] 
Sorry, that is the wrong password. 

TIP: In Chapter 6 you will learn how to manipulate strings so that case-insensitive 
comparisons can be performed. 

In addition to determining whether strings are equal or not equal, you can also determine 
whether one string is greater than or less than another string. This is a useful capability 
because programmers commonly need to design programs that sort strings in some order. 

Recall from Chapter 1 that computers do not actually store characters, such as A, B, C, and 
so on, in memory. Instead, they store numeric codes that represent the characters. Chapter 1 
mentioned that ASCII (the American Standard Code for Information Interchange) is a 
commonly used character coding system. You can see the set of ASCII codes in Appendix C, 
but here are some facts about it: 

The uppercase characters A through Z are represented by the numbers 65 through 90. 
The lo\vercase characters a through z are represented by the numbers 97 through 122. 
When the digits 0 through 9 are stored in memory as characters, they are represented 
by the numbers 48 through 57. (For example, the string abc  1 2 3  ' would be stored 
in memory as the codes 97, 98, 99, 49, 50, and 51.) 

* A blank space is represented by the number 32. 

In addition to establishing a set of numeric codes to represent characted in memory, ASCII 
also establishes an order for characters. The character "A" comes before the character "B", 
which comes before the character "C", and so on. 

When a program compares characters, it actually compares the codes for the characters. 
For example, look at the following i f  statement: 

if 'a' 4 'b': 

print 'The letter a is less than the letter b. ' 



128 Chapter 4 Decision Structures and Boolean Logic 

This code determines whether the ASCII code for the character a is less than the ASCII 
code for the character ' b ' . The expression a < ' b ' is true because the code for ' a ' is 
less than the code for b I .  So, if this were part of an actual program it would display the 
message 'The  l e t te r  a i s  less t h a n  t h e  le t ter  b.'  

Let's look at how strings containing more than one character are typically compared. 
Suppose a program uses the strings ' M a r y  ' and M a r k  ' as follows: 

namel = 'Mary' 

name2 = 'Mark' 

Figure 4-10 shows how the individual characters in the strings ' M a r y '  and M a r k  ' would 
actually be stored in memory, using ASCII codes. 

cigarre a-30 Character codes for the strings ~ ~ a r y '  and ' M a r k '  

M a r y  M a r k  

When you use relational operators to compare these strings, the strings are compared 
character-by-character. For example, look at the following code: 

namel = 'Mary' 

name2 = 'Mark' 
if namel > name2: 

print 'Mary is greater than Mark' 

else : 
print 'Mary is not greater than Mark' 

The > operator compares each character in the strings ' M a r y '  and ' M a r k ' ,  beginning 
with the first, or leftmost, characters. This is shown in Figure 4-11. 

Figure 4-1 i Comparinq eat$ character in a string 

M a r k  

Here is how the comparison takes place: 

1. The M I in ' M a r y  is compared with the I M in ' M a r k  ' . Since these are the same, 
the next characters are compared. 

2. The a in M a r y  is compared with the a in ' M a r k  ' . Since these are the same, 
the next characters are compared. 

3. The r in I M a r y  is compared with the ' r ' in ' M a r k  ' . Since these are the same, 
the next characters are compared. 

4. The y in M a r y  is compared with the I k ' in ' M a r k  ' . Since these are not the same, 
the two strings are not equal. The character y has a higher ASCII code (121) than 

k (107), so it is determined that the string ' M a r y  ' is greater tllan the string ' M a r k  ' . 
If one of the strings in a comparison is shorter than the other, only the corresponding charac- 
ters will be compared. If the corresponding characters are identical, then the shorter string is 



4.3 Comparing Strings 129 

considered less than the longer string. For example, suppose the strings ' High ' and ' Hi ' 
were being compared. The string ' Hi would be considered less than High ' because it is 
shorter. 

Program 4-4 shows a simple demonstration of how two strings can be compared with the 
< operator. The user is prompted to enter two names and the program displays those two 
names in alphabetical order. 

# This program demonstrates how the < operator can 
# be used to compare strings. 

def'maino: 

# Get two names from the user. 

namel = raw-input ( 'Enter a name (last name first ) : ' ) 

name2 = raw-input('Enter another name (last name first): ' )  

# Display the names in alphabetical order. 
print 'Here are the names, listed alphabetically.' 

if namel < name2: 
print namel 

print name2 

else : 

print name2 

print namel 

# Call the main function. 

main ( ) 

Enter a n 
Enter an0 

Here are 

Costa, Jo 

Jones, Ri 

ame ( la 

ther na 

the nam 

an 

chard 

st name 

me (las 

first ) 

t name 

es, lis ted alp 

: jones, 
first) 

habetic ally: 

%@& Checkpoint 
I: 

4.11 What would the following code display? 

if ' z '  < 'a': 

print ' z  is less than a. ' 
else: 

print 'z is not less than a.' 

4.12 What would the following code display? 

sl = 'New York' 

s2 = 'Boston' 



130 Chapter 4 Decision Structures and Boolean Logic 

if sl > s2: 
print s2 

print sl 

else: 

print sl 

print s2 

Nested Dec l s i s~  S%ractures and the  
f f-elif-else StaRement 

i CONCEPT: To test more than one condition, a decision structure can be nested 
inside another decision structure. 

In Section 4.1, we mentioned that a control structure determines the order in which a set 
of statements execute. Programs are usually designed as combinations of different control 
structures. For example, Figure 4-12 shows a flowchart that combines a decision structure 
with two sequence structures. 

Flawre 4-42 Cornbinina seauence structures with a decision structure 

Start c 3  I 

......... Sequence structure i + 

1 (old\ True , 
outside 

Decision structure ......... 

Wear a coat. 

........ 

......... Sequence structure i 

... 



4.4 Nested Decision Structures and the i f  -elif -else Statement 131 

The flowchart in the figure starts with a sequence structure. Assuming you have an outdoor 
thermometer in your window, the first step is Go to the window, and the next step is Read 
thermometer. A decision structure appears next, testing the condition Cold outside. 
If this is true, the action wear a coat is performed. Another sequence structure appears 
next. The step Open the door is performed, followed by Go outside. 

Quite often, structures must be nested inside other structures. For example, look at the 
partial flowchart in Figure 4-13. It shows a decision structure with a sequence structure 
nested inside it. The decision structure tests the condition Cold outside. If that condition 
is true, the steps in the sequence structure are executed. 

Figure 4-1 3 A sequence structure nested inside a decision structure 

Decision 
structure 

Sequence 
structure 

You can also nest decision structures inside other decision structures. In fact, this is a 
common requirement in programs that need to test more than one co%dition. For exam- 
ple, consider a program that determines whether a bank customer qualifies for a loan. 
To qualify, two conditions must exist: (1) the customer must earn at least $30,000 per 
year, and (2) the customer must have been employed at his or her current job for at least 
two years. Figure 4-14 shows a flowchart for an algorithm that could be used in such a 
program. Assume that the salary variable is assigned the customer's annual salary, and 
the years on job variable is assigned the number of years that the customer has 
worked onbis o r  her current job. 



132 Chapter 4 Decision Structures and Boolean Logic 

Figure 4-84 A nested decision structure 

If we follow the flow of execution, we see that the condition sa lary  >= 30000 is tested. 
If this condition is false, there is no need to perform further tests; we know that the cus- 
tomer does not qualify for the loan. If the condition is true, however, we need to test the 
second condition. This is done with a nested decision sfructure that tests the condition 
years on job >= 2. If this condition is true, then the customer qualifies for the loan. 
If this condition is false, then the customer does not qualify. Program 4-5 shows the code 
for the complete program. 

Program 4-5 (loan-qua1ifier.p~) 

# This program determines whether a bank customer 

# qualifies for a loan. 

def main ( ) : 

# Get the customer's annual salary. 

salary = input ( 'Enter your annual salary: ' ) 

# Get the number of years on the current job. 
years-on-job = input('Enter the number of ' + \ 

'years on your current job: ' )  



4.4 Nested Decision Structures and the if-elif -else Statement 133 

# Determine whether the customer qualifies. 

if salary >= 30000.0: 

if years-on-job >= 2: 

print ' You qualify for the loan. ' 
else : 

print 'You must have been on your current' 

print 'job for at least two years to qualify. ' 

else: 

print 'You must earn at least $30,000 per year' 

print 'to qualify. ' 

# Call the main function. 

main'( ) 

on your cu 

our cur 

Look at the i f- e lse  statement that begins in line 13. It tests the condition salary >= 
3 0 0 0 0 . 0 .  If this condition is true, the i f  -else statement that begins in line 14 is exe- 
cuted. Otherwise the program jumps to the e l se  clause in line 19 and executes the two 
p r i n t  statements in lines 20 and 21. The program then leaves the decision structure and 
the main function ends. 

It's important to use proper indentation in a nested decision structure. Not only is proper 
indentation required by the Python interpreter, but it also makes it easier for you, the 
human reader of your code, to see which actions are performed by ea& part of the struc- 
ture. Follow these rules when writing nested i f  statements: 

0 Make sure each e l se  clause is aligned with its matching i f  clause. This is shown in 
Figure 4-15. 
Make sure the statements in each block are consistently indented. The shaded parts 
of Figure 4-16 show the nested blocks in the decision structure. Notice that each state- 
ment in each block is indented the same amount. 



134 Chapter 4 Decision Structures and Boolean Logic 

Figure 4-15 Alignment of i f  and else clauses 

i f  s a l a r y  >= 3 0 0 0 0 . 0 :  
This i f  i f  years- on- job >= 2 :  

This i f  and else p r i n t  'You q u a l i f y  f o r  t h e  l o a n . '  
and e l s e  go together. E e l s e :  

go together. p r i n t  'You m u s t  h a v e  b e e n  o n  y o u r  c u r r e n t '  
p r i n t  ' j o b  f o r  a t  l e a s t  t w o  y e a r s  t o  q u a l i f y . '  

I e l s e :  
p r i n t  'You m u s t  e a r n  a t  l e a s t  $ 3 0 , 0 0 0  per  y e a r '  
p r i n t  ' t o  q u a l i f y . '  

Flglare 4-16 Nested blocks 

i f  s a l a r y  >= 3 0 0 0 0 . 0 :  
I f  y e a r s  o n  job >= 7 :  

.*$kyp<w&.~.lq?J& I!.? 
clsc: 

- - : , I y. . A -. . , h2.",? c<.=r !:,:!Ir <.-.-,-: ,:- ' 
:.c < .  ? ' . .  i , :c+..;: ,.? \..:,-: A -  - >..:. 1 - Is:. ' 

else: 
p r i r t  'You n u s t  e a r ?  a t  .leas= $ 3 0 , 0 0 0  p e r  y e a r '  
pri.nr ' L O  q u a l i f y . .  ' 

Testing a Series of Conditions 
In the previous example you saw how a program can use nested decision structures to test 
more than one condition. It is not uncommon for a program to have a series of conditions 
to test, and then perform an action depending on which condition is true. One way to 
accomplish this it to have a decision structure with numerous other decision structures 
nested inside it. For example, consider the program presented in the following In the 
Spotlight section. 





Even though Program 4-6 is a simple example, the logic of the nested decision structure is 
fairly complex. Python provides a special version of the decision structure known as the 
i f - e l i f  -else statement, which makes this type of logic simpler to write. Here is the 
general format of the if -elif -else statement: 

if condition-1 : 
statement 

statement 

etc. 

elif condition-2 : 

statement 

statement 

etc. 



4.4 Nested Decision Structures and the i f  - e l i f  - e l s e  Statement 137 

Insert as many e l i f  clauses as necessary 

e l s e  : 
s ta tement  

s ta tement  

etc. 

When the statement executes, c o n d i t i o n  1 is tested. If c o n d i t i o n  1 is true, the block - - 
of statements that immediately follow is executed, up to the e l i f  clause. The rest of the 
structure is ignored. If condit ion-1 is false, however, the program jumps to the very next 
e l i f  clause and tests c o n d i t i o n  2. If it is true, the block of statements that immediately 
follow is executed, up to the next e l i f  clause. The rest the structure is then ignored. This 
process continues until a condition is found to be true, or no more e l i f  clauses are left. If 
no condition is true, the block of statements following the else clause is executed. 

The following is an example of the i f  - e l i f  - e l s e  statement. This code works the same 
as the nested decision structure in lines 9 through 21 of Program 4-6. 

i f  s c o r e  < 60:  

p r i n t  'Your grade i s  F. ' 

e l i f  s c o r e  < 70:  

p r i n t  'Your grade i s  D. ' 

e l i f  s c o r e  < 80: 

p r i n t  'Your grade i s  C. ' 
e l i f  s c o r e  < 90:  

p r i n t  'Your grade i s  B. ' 

else : 
p r i n t  'Your grade i s  A. ' 

Notice the alignment and indentation that is used with the i f  - e l i f  -else statement: The i f ,  
e l i f ,  and e l s e  clauses are all aligned, and the conditionally executed blocks are indented. 

The i f  - e l i f  -else statement is never required because its logic can be coded with nested 
i f - e l s e  statements. However, a long series of nested i f  -else statements has two par- 
ticular disadvantages when you are debugging code: 

* The code can grow complex and become difficult to understand. 
* Because of the required indentation, a long series of nested i f  -else statements can 

become too long to be displayed on the computer screen without horizontal scrolling. 
Also, long statements tend to "wrap around" when printed on paper, making the code 
even more difficult to read. 

The logic of an i f - e l i f - e l s e  statement is usually easier to follow than a long series of 
nested i f  -else statements. And, because all of the clauses are aligned in ?n i f  - e l i f  -else 
statement, the lengths of the lines in the statement tend to be shorter. 

'' 

heckpoint 

4.13 Convert the following code to an i f - e l i f  -else statement: 

i f  number == 1: 

p r i n t  ' One ' 



138 Chapter 4 Decision Structures and Boolean Logic 

e l s e :  
i f  number == 2: 

p r i n t  ' Two ' 

else: 

i f  number == 3 :  
p r i n t  ' Three ' 

else: 

p r i n t  ' Unknown ' 

Logical Operators 

- C 0 N C E PT: The logical and operator and the logical or operator allow you to con- 
nect multiple Boolean expressions to create a compound expression. The 
logical n o t  operator reverses the truth of a Boolean expression. 

Python provides a set of operators known as logical operators, which you can use to cre- 
ate complex Boolean expressions. Table 4-3 describes these operators. 

Table 4-3 Logical operators 

Operator Meaning 

and The and operator connects two Boolean expressions into one compound expres- 
sion. Both subexpressions must be true for the compound expression to be true. 

o r  The o r  operator connects two Boolean expressions into one compound expres- 
sion. One or both subexpressions must be true for the compound expression to 
be true. It is only necessary for one of the subexpressions to be true, and it does 
not matter which. 

n o t  The n o t  operator is a unary operator, meaning it' works with only one operand. 
The operand must be a Boolean expression. The n o t  operator reverses the truth 
of its operand. If it is applied to an expression that is true, the operator returns 
false. If it is applied to an expression that is false, the operator returns true. 

Table 4-4 shows examples of several compound Boolean expressions that use logical 
operators. 

Table 4-4 Compound Boolean expressions using logical operators 

Expression Meaning 

x > y a n d a < b  Is x greater than y AND is a less than b? 

x == Y o r  x == z Is x equal to y OR is x equal to z ?  

n o t  (x > y )  Is the expression x > y NOT true? 



4.5 Logical Operators 139 

The and operator takes two Boolean expressions as operands and creates a compound 
Boolean expression that is true only when both subexpressions are true. The following is 
an example of an i f  statement that uses the and operator: 

if temperature < 20 and minutes > 12: 
print ' The temperature is in the danger zone. ' 

In this statement, the two Boolean expressions t e m p e r a t u r e  < 2 0  and minu tes  > 1 2  
are combined into a compound expression. The p r i n t  statement will be executed only if 
t e m p e r a t u r e  is less than 20 and m i n u t e s  is greater than 12. If either of the Boolean 
subexpressions is false, the compound expression is false and the message is not displayed. 

Table 4-5 shows a truth table for the and operator. The truth table lists expressions shovr- 
ing ill the possible combinations of true and false connected with the and operator. The 
resulting values of the expressions are also shown. 

"~ble  4-5 Truth table for the and operator 

Expression Value of the Expression 

true and false 

false and true 

false and false 

true and true 

false 

false 

false 

true 

As the table shows, both sides of the and operator must be true for the operator to return 
a true value. 

The o r  operator takes two Boolean expressions as operands and creates a compound 
Boolean expression that is true when either of the subexpressions is true. The following is 
an example of an i f  statement that uses the o r  operator: 

if, temperature < 20 or temperature > 100 : 
print 'The temperature is too extreme' 

The p r i n t  statement will execute only if t e m p e r a t u r e  is less than 20 or t e m p e r a t u r e  
is greater than 100. If either subexpression is true, the compound expression is true. Table 4-6 
shows a truth table for the o r  operator. 

.". +a%e 4-6 Truth table for the o r  operator s 

Expression Value of the Expression 

true o r  false true 

false o r  true true 

false o r  false false 

true o r  true true 



140 Chapter 4 Decision Structures and Boolean Logic 

All it takes for an o r  expression to be true is for one side of the o r  operator to be true. It 
doesn't matter if the other side is false or true. 

Both the and and o r  operators perform short-circuit evaluation. Here's how it works with 
the and operator: If the expression on the left side of the and operator is false, the expres- 
sion on the right side will not be checked. Because the compound expression will be false 
if only one of the subexpressions is false, it would waste CPU time to check the remaining 
expression. So, when the and operator finds that the expression on its left is false, it short- 
circuits and does not evaluate the expression on its right. 

Here's how short-circuit evaluation works with the o r  operator: If the expression on the 
left side of the o r  operator is true, the expression on the right side will not be checked. 
Because it is only necessary for one of the expressions to be true, it would waste CPU time 
to check the remaining expression. 

The no% Ope-alo~ 
The n o t  operator is a unary operator that takes a Boolean expression as its operand and 
reverses its logical value. In other words, if the expression is true, the n o t  operator returns 
false, and if the expression is false, the n o t  operator returns true. The following is an i f  
statement using the n o t  operator: 

if not (temperature > 100) : 
print 'This is below the maximum temperature.' 

First, the expression ( t e m p e r a t u r e  > 100) is tested and a value of either true or false is 
the result. Then the n o t  operator is applied to that value. If the expression ( t empera tu re  > 
100) is true, the n o t  operator returns false. If the expression ( t e m p e r a t u r e  > 100) is 
false, the n o t  operator returns true. The previous code is equivalent to asking: "Is the tem- 
perature not greater than loo?" 

NOTE: In this example, we have put parentheses around the expression t e m p e r a t u r e  
> 100. This is to make it clear that we are applying the n o t  operator to the value of 

1 the expression t e m p e r a t u r e  > 100, not just to the t e m p e r a t u r e  variable. 
i I 

Table 4-7 shows a truth table for the n o t  operator. 

Table 4-9 Truth table for the n o t  operator 

Expression Value of the Expression 

not  true 

not  false 

false 

true 



4.5 Logical Operators 141 

In some situations the and operator can be used to simplify nested decision structures. For 
example, recall that the loan qualifier program in Program 4-5 uses the following nested 
i f  -else statements: 

if salary >= 30000.0: 

if years-on-job >= 2: 

print 'You qualify for the loan. ' 
else: 

print 'You must have been on your current' 
print 'job for at least two years to qualify. ' 

else: 
, print 'You must earn at least $30,000 per year' 

print ' to qualify. ' 

The purpose of this decision structure is to determine that a person's salary is at least 
$30,000 and that he or she has been at their current job for at least two years. Program 4-7 
shows a way to perform a similar task with simpler code. 

Program 4-7 (loan-qualifier2.p~) 

# This program determines whether a bank customer 
# qualifies for a loan. 

def main( ) : 
# Get the customer's annual salary. 

salary = input ( 'Enter your annual salary: ' ) 

# Get the number of years on the current job. 
years-on-job = input( 'Enter the number of ' + \ 

'years on your current job: ' 

# Determine whether the customer qualifies. 
if salary >= 30000.0 and years-on-job >= 2: 

print 'You qualify for the loan. ' 
else: 

print 'You do not qualify for this loan. ' 

# Call the main function. 

main ( ) 

ter the 
u do no 

number 
t quali 

of yea 
fy for 

rs on y 
this lo 

our cur 
an. 

Program Output (with input shown in bold) 

Enter your annual salary: 35000 [Enter] 
En rent job: 1 [Enter] 
Yo 



142 Chapter 4 Decision Structures and Boolean Logic 

kter the 
)u do nc 

! number 

The i f  - t h e n - e l s e  statement in lines 13 through 16 tests the compound expression 
s a l a r y  >= 30000  and years- on- job >= 2. If both subexpressions are true, the 
compound expression is true and the message "You qualify for the loan" is displayed. If 
either of the subexpressions is false, the compound expression is false and the message 
"You do not qualify for this loan" is displayed. 

it is not equivalent. If the user does not qualify for the loan, Program 4-7 displays only 
the message "You do not qualify for this loan" whereas Program 4-5 displays one of 

Suppose the bank is losing customers to a competing bank that isn't as strict about whom 
it loans money to. In response, the bank decides to change its loan requirements. Now, cus- 
tomers have to meet only one of the previous conditions, not both. Program 4-8 shows the 
code for the new loan qualifier program. The compound expression that is tested by the 
i f  -else statement in line 13 now uses the o r  operator. 

# This program determines whether a bank customer 

# qualifies for a loan. 

def main(): 

# Get the customer's annual salary. 
salary = input('Enter your annual salary: ' )  

# Get the number of years on the current job. 
years-on-job = input('Enter the number of ' + \ 

'years on your current job: ' )  

# Determine whether the customer qualifies. 
if salary >= 30000.0 or years-on-job >= 2: 



4.5 Logical Operators I43 

14 print 'You qualify for the loan. ' 
15 else: 

16 print 'You do not qualify for this loan. ' 

17 
18 # Call the main function. 

19 main() 

Sometimes you will need to design an algorithm that determines whether a numeric value is 
within a specific range of values or outside a specific range of values. When determining whether 
a number is inside a range, it is best to use the and operator. For example, the following i f  
statement checks the value in x to determine whether it is in the range of 20 through 40: 

if x >= 20 and x <= 40: 

print 'The value is in the acceptable range. ' 

The compound Boolean expression being tested by this statement will be true only when x 
is greater than or equal to 20 and less than or equal to 40. The value in x must be within 
the range of 20 through 40 for this cornpound expression to be true. 

When determining whether a number is outside a range, it is best to use the or  operator. 
The following statement determines whether x is outside the range of 20 through 40: 

if x < 20 or x > 40: 
print 'The value is outside the acceptable range. ' 

It is important not to get the logic of the logical operators confused whed testing for a range 
of numbers. For example, the compound Boolean expression in the following code would 
never test true: 

# This is an error! 

if x < 20 and x > 40: 
print 'The value is outside the acceptable range. ' 

Obviously, x cannot be less than 20 and at the same time be greater than 40. 



144 Chapter 4 Decision Structures and Boolean Logic 

p d  Checkpoint 

4.14 What is a compound Boolean expression? 

4.15 The following truth table shows various combinations of the values true and false 
connected by a logical operator. Complete the table by circling T or F to indicate 
whether the result of such a combination is true or false. 

Logical Expression Result (circle T or F) 

True and False 

True and True 

False and True 

False and False 

True o r  False 

True o r  True 

False o r  True 

False o r  False 

n o t  True 

n o t  False 

4.16 Assume the variables a = 2, b = 4, and c = 6. Circle the T or F for each of the 
following conditions to indicate whether its value is true or false. 

a = = 4 o r b > 2  T F 
6 <= c and a > 3 T F 
1 != b and c != 3 T F 
a  >= -1 o r  a <= b T F 
not  ( a  > 2 )  T F 

4.17 Explain how short-circuit evaluation works with the and and o r  operators. 

4.18 Write an i f  statement that displays the message '."The number is valid" if the 
value referenced by speed  is within the range 0 through 200. 

4.19 Write an i f  statement that displays the message "The number is not valid" if the 
value referenced by s p e e d  is outside the range 0 through 200. 

Boolean Variables 

t- CONCEPT: A Boolean variable can reference one of two values: True or False. 
Boolean variables are commonly used as flags, which indicate whether 
specific conditions exist. 

So far in this book we have worked with i n t ,  f l o a t ,  and str (string) variables. In addi- 
tion to these data types, Python also provides a boo1 data type. The boo1 data type allows 
you to create variables that may reference one of two possible values: True  or F a l s e .  Here 
are examples of how we assign values to a boo1 variable: 

hungry = True 

s leepy  = False  



Review Questions 145 

Boolean variables are most commonly used as flags. A flag is a variable that signals when 
some condition exists in the program. When the flag variable is set to F a l s e ,  it indicates 
the condition does not exist. When the flag variable is set to True,  it means the condition 
does exist. 

For example, suppose a salesperson has a quota of $50,000. Assuming s a l e s  references 
the amount that the salesperson has sold, the following code determines whether the quota 
has been met: 

if sales >= 50000.0: 
sales-quota-met = True 

else: 

sales-quota-met = False 

As a result of this code, the sales - quota-met variable can be used as a flag to indicate 
whether the sales quota has been met. Later in the program we might test the flag in the 
following way: 

if sales-quota-met: 

print 'You have met your sales quota! ' 

This code displays ' Y O U  have m e t  your  s a l e s  quo ta !  ' if the boo1 variable 
s a l e s  quota-met is True. Notice that we did not have to use the == operator to explic- 
itly compare the sales- quota-met variable with the value True.  This code is equiva- 
lent to the following: 

if sales - quota-met == True: 

print 'You have met your sales quota! ' 

Checkpoint 

4.20 What values can you assign to a boo1 variable? 

4.21 What is a flag variable? 

3nces. 
sequencc 
circumst . . .  

ingle e2 

ternative 
1. 

recution I 

decision 
ive . . .  













; 5.1 Introduction to Repetition Structures 5.4 Calculating a Running Total 
I 5.2 The while Loop: a Condition- 5.5 Sentinels / Controlled Loop 5.6 Input Validation Loops 
1 5.3 The for Loop: a Count-Controlled Loop 5.7 Nested Loops 

: - ~ Y T C " Y F C : ~ F  %o Repetition Structures 

- CONCEPT: A repetition structure causes a statement or set of statements to execute 
repeatedly. 

Programmers commonly have to write code that ~erforms the same task over and over. For 
example, suppose you have been asked to write a program that calculates a 10 percent sales 
commission for several sales people. Although it would not be a good design, one approach 
would be to write the code to calculate one sales person's commission, and then repeat that 
code for each sales person. For example, look at the following: 

# Get a salesperson's sales and commission rate. 
sales = input ( 'Enter the amount of sales : ' ) 

coyrate = input('Enter the commission rate: ' )  

# Calculate the commission. 
commission = sales * coyrate 

# Display the commission. 
print 'The commission is $%.2f.' % commission 

# Get another salesperson's sales and commission rate. 

sales = input( 'Enter the amount of sales: ' ) 

co-rate = input('Enter the commission rate: ' )  

# Calculate the commission. 
commission = sales * comm rate - 



152 Chapter 5 Repetition Structures 

# Display the commission. 

print ' The commission is $ %  . 2 f .  ' % commission 

# Get another salesperson's sales and commission rate. 

sales = input ( 'Enter the amount of sales : ' ) 

c o ~ r a t e  = input('Enter the commission rate: ' )  

# Calculate the commission. 

commission = sales * c o ~ r a t e  

# Display the commission. 

print 'The commission is $%.2f.' % commission 

And this code goes on and on . . . 
As you can see, this code is one long sequence structure containing a lot of duplicated code. 
There are several disadvantages to this approach, including the following: 

The duplicated code makes the program large. 
Writing a long sequence of statements can be time consuming. 
If part of the duplicated code has to be corrected or changed then the correction or 
change has to be done many times. 

Instead of writing the same sequence of statements over and over, a better way to 
repeatedly perform an operation is to write the code for the operation once, and then 
place that code in a structure that makes the computer repeat it as many times as nec- 
essary. This can be done with a repetition structure, which is more commonly ltnown 
as a loop. 

In this chapter, we will look at two broad categories of loops: condition-controlled and 
count-controlled. A condition-controlled loop uses a truelfalse condition to control the 
number of times that it repeats. A count-controlled loop repeats a specific number of times. 
In Python you use the w h i l e  statement to write a condition-controlled loop, and you use 
the for statement to write a count-controlled loop. In this chapter, we will demonstrate 
how to write both types of loops. 

Checkpoint 

5.1 What is a repetition structure? 

5.2 What is a condition-controlled loop? 

5.3 What is a count-controlled loop? 

L CONCEPT: A condition-controlled loop causes a statement or set of statements to 
repeat as long as a condition is true. In Python you use the while state- 
ment to write a condition-controlled loop. 



5.2 The while Loop: a Condition-Controlled Loop 153 

The w h i l e  loop gets its name from the way it works: while a condition is true, do some 
task. The loop has two parts: (1) a condition that is tested for a true or false value, and (2) 
a statement or set of statements that is repeated as long as the condition is true. Figure 5-1 
shows the logic of a w h i l e  loop. 

clgure 5-1 The logic of a w h i l e  loop 

The diamond symbol represents the condition that is tested. Notice what happens if the 
condition is true: one or more statements are executed and the program's execution flows 
back to the point just above the diamond symbol. The condition is tested again, and if it is 
true, the process repeats. If the condition is false, the program exits the loop. In a flowchart, 
you will always recognize a loop when you see a flow line going back to a previous part of 
the flowchart. 

Here is the general format of the w h i l e  loop in Python: 

while condition : 

statement 

statement 

etc. 

For simplicity, we will refer to the first line as the w h i l e  clause. The w h i l e  clause begins 
*with the word whi l e ,  followed by a Boolean c o n d i t i o n  that will be evaluated as either 
true or false. A colon appears after the c o n d i t i o n .  Beginning at the next line is a block 
of statements. (Recall from Chapter 3 that all of the statements in a block must be consis- 
tently indented. This indentation is required because the Python interpreter uses it to tell 
where the block begins and ends.) 

When the w h i l e  loop executes, the c o n d i t i o n  is tested. If the c o n d i t i o n  is true, the 
statements that appear in the block following the w h i l e  clause are executed, and then the 
loop starts over. If the c o n d i t i o n  is false, the program exits the loop. Program 5-1 shows 
how we might use a w h i l e  loop to write the commission calculating program that was 
described at the beginning of this chapter. 



154 Chapter 5 Repetition Structures 

I # This program calculates sales commissions. 
2 def main( ) : 
3 # Create a variable to control the loop. 
4 keep-going = ' y ' 

5 

6 # Calculate a series of commissions. 
7 while keep-going == ' y ' :  

8 # Get a salesperson's sales and commission rate. 

9 sales = input ( 'Enter the amount of sales : ' ) 
1 0  comm-rate = input('Enter the commission rate: ' )  

13 
32 # Calculate the commission. 

13 commission = sales * co-rate 
14 

15 # Display the commission. 
16 print 'The commission is $%.2f.' % commission 
17 
18 # See if the user wants to do another one. 

19 keep-going = raw-input ( 'Do you want to calculate another ' + \ 
2 0 'commission (Enter y for yes): ' ) 

2 1 

22 # Call the main function. 
23 main() 

In line 4 we use an assignment statement to create a variable named keep going. Notice - 
that the variable is assigned the value ' y I .  This initialization value is important, and in a 
moment you will see why. 

Line 7 is the beginning of a w h i l e  loop, which starts like this: 

while keep-going == ' y ' : 



5.2 The w h i l e  Loop: a Condition-Controlled Loop 155 

Notice the condition that is being tested: keep - going == y . The loop tests this con- 
dition, and if it is true, the statements in lines 8 through 20 are executed. Then, the loop 
starts over at line 7. It tests the expression keep-going == y ' and if it is true, the state- 
ments in lines 8 through 20 are executed again. This cycle repeats until the expression 
keepgoing == ' y is tested in line 7 and found to be false. When that happens, the 
program exits the loop. This is illustrated in Figure 5-2. 

The while loop 

This condition is tested. 

1 
while keep-going == 'y' : 
I 

If the condition is true, 
these statements are 
executed, and then the 
loop starts over. 

If the condition is false, 
these statements are 
skipped and the 
program exits the loop. 

# Get a salesperson's sales and commission rate. 
sales = input('Enter the amount of sales: ' )  

comm-rate = input('Enter the commission rate: ' )  

# Calculate the commission. 
commission = sales * corn-rate 

# Display the commission 
print 'The commission is $%.2f.' % commission 

# See if the user wants to do another one. 
keep going = raw-input('Do you want to calculate another ' + L - 'commission (Enter y for yes) : ' )  

In order for this loop to stop executing, something has to happen inside the loop to make 
the expression keep-going == y false. The statement in lines 19 through 20 take 
care of this. This statement displays the prompt "Do you want to calculate another com- 
mission (Enter y for yes)." The value that is read from the keyboard is assigned to the 
keep-going variable. If the user enters y (and it must be a lowercase y), then the 
expression keep-going == y will be true when the loop starts over. This will cause 
the statements in the body of the loop to execute again. But if the user enters anything 
other than lowercase y, the expression will be false when the loop starts over, and the pro- 
gram will exit the loop. 

Now that you have examined the code, look at the program output in the sample run. First, 
the user entered 10000.00 for the sales and 0.10 for the commission rate. Then, the pro- 
gram displayed the commission for that amount, which is $1000.00. Next the user is 
prompted "Do you want to calculate another commission? (Enter y for 9 yes)." The user 
entered y, and the loop started the steps over. In the sample run, the user went through this 
process three times. Each execution of the body of a loop is known as an iteration. In the 
sample run, the loop iterated three times. 

Figure 5-3 shows a flowchart for the main function. In the flowchart we have a repetition 
structure, which is the while loop. The condition keep-going == ' y is tested, and if 
it is true a series of statements are executed and the flow of execution returns to the point 
just above the conditional test. 



156 Chapter 5 Repetition Structures 

Figure 5-3 Flowchart for Program 5-1 

main() 

Assign 'y' to keep-going 

True 
keep-going == 'y' 

C 
the amount of sales and 

Prompt the user to enter 
the commission rate and 
assign it to comm-rate. 

commission = sales * 
comm-rate 

commission 

want to calculate another 
commission? (Enter y for 
yes)' and assign the input 

The while Loop i s  a Pretest Loop 
The w h i l e  loop is known as a pretest loop, which means it tests its condition before per- 
forming an iteration. Because the test is done at the beginning of the loop, you usually have 



5.2 The while Loop: a Condition-Controlled Loop 157 

to perform some steps prior to the loop to make sure that the loop executes at least once. 
For example, the loop in Program 5-1 starts lilte this: 

while keep-going == ' y ' : 

The loop will perform an iteration only if the expression k e e p  g o i n g  == ' y '  is 
true. This means that (a)  the k e e p  g o i n g  variable has to ex%, and (b) it has to - 
reference the value ' y ' .  To make sure the expression is true the first time that the 
loop executes, we assigned the value ' y ' to the k e e p  g o i n g  variable in line 4 as - 
follows: 

keep-going = ' y ' 

By performing this step we know that the condition keep  g o i n g  == ' y ' will be true - 
the first time the loop executes. This is an important characteristic of the w h i l e  loop: it 
will never execute if its condition is false to start with. In some programs, this is exactly 
what you want. The following In the Spotligl7t section gives an example. 





substar 
rature j 

. . 

ice's Ct 

In all but rare cases, loops must contain within themselves a way to terminate. This means 
that something inside the loop must eventually make the test condition false. The loop in 
Progfam 5-1 stops when the expression k e e p g o i n g  == y is false. If a loop does not 
have a way of stopping, it is called an infinite loop. An infinite loop continues to repeat 
until the program is interrupted. Infinite loops usually occur when the programmer forgets 
to write code inside the loop that makes the test condition false. In most circumstances you 
should avoid writing infinite loops. 

Program 5-3 demonstrates an infinite loop. This is a modified version of the commission 
calculating program shown in Program 5-1. In this version, we have removed the code that 
modifies the keep - g o i n g  variable in the body of the loop. Each time the expression 
keep- going == ' y is tested in line 7, keep  - g o i n g  will reference the string 'y'. As a 
consequence, the loop has no way of stopping. 

Program 5-3 (infinite.py) 

# This program demonstrates an infinite loop. 
def main ( ) : 

# Create a variable to control the loop. 

keep-going = ' y ' 

# Warning! Infinite loop! 
while keep-going == ' y ' :  

# Get a salesperson's sales and commission rate. 
sales = input( 'Enter the amount of sales: ' ) 

corm-rate = input('Enter the commission rate: ' )  

# Calculate the commission. 
commission = sales * co-rate 

15 # Display the commission. 
16 print 'The commission is $%.2f.' % commission 
17 

18 # Call the main function. 



160 Chapter 5 Repetition Structures 

Functions can be called from statements in the body of a loop. In fact, such code in a loop 
often improves the design. For example, in Program 5-1, the statements that get the amount 
of sales, calculate the commission, and display the commission can easily be placed in a func- 
tion. That f~~nction can then be called in the loop. Program 5-4 shows how this might be done. 

This program bas a main function, which is called when the program runs, and a 
show - commission function that handles all of the steps related to calculating and 
displaying a commission. Figure 5-4 shows flowcharts for the main and show~commission 
functions. 

Program 5-4 (commission2.py) 

1 # This program calculates sales commissions. 
2 def main( ) : 

3 # Create a variable to control the loop. 
4 keep-going = ' y ' 
5 

6 # Calculate a series of commissions. 
while keep-going == ' y ' : 

# Call the show~commission function to 
# display a salesperson's commission. 
show~commission() 

# See if the user wants to do another one. 
keep-going = raw-input ( ' Do you want to calculate another ' + \ 

'commission (Enter y for yes): ' ) 

# The show~commission function gets the amount of 
# sales and the commission rate, and then dk$plays 
# the amount of commission. 

def show~commission(): 
# Get a salesperson's sales and commission rate. 
sales = input ( 'Enter the amount of sales : ' ) 

c o ~ r a t e  = input('Enter the commission rate: ' )  

# Calculate the commission. 
commission = sales * co-rate 

# Display the commission. 
print 'The commission is $ %  .2f. ' % commission 

30 # Call the main function. 

The output of this program is the same as that of Program 5-1 



5.3 The f o r  Loop: a Count-Controlled Loop 161 

?awce 5-4 Flowcharts for the main and show commission functions 
- 

Assign 'y' to keep-going 

< keep-going == 'y' 
True 

I 

show~commission( ) 

False 

Prompt the user to enter 
the amount of sales and 

assign it to sales. 

rompt the user to enter 
e commission rate and 

assign it to comm-rate. 

commission = sales * 
comm-rate 

Display the 
commission 

Return 0 

5.4 What is a loop iteration? 

5.5 Does the w h i l e  loop test its condition before or after it performs an iteration? 

5.6 How many times will He l lo  World ' b e  printed in the following program? 

count = 1 0  

while  count < 1: 

p r i n t  'Hel lo  World' 

.S.7 What is an infinite loop? 

3 

The go- Loop: B Cob~qt-Ca.-tpe;!e$ Leap 

L CONCEPT: A count-controlled loop iterates a specific number of times. In Python 
you use the for statement to write a count-controlled loop. 

As mentioned at the beginning of this chapter, a count-controlled loop iterates a specific 
number of times. Count-controlled loops are commonly used in programs. For example, 



162 Chapter 5 Repetition Structures 

suppose a business is open six days per week, and you are going to write a program that 
calculates the total sales for a week. You will need a loop that iterates exactly six times. 
Each time the loop iterates, it will prompt the user to enter the sales for one day. 

You use the f o r  statement to write a count-controlled loop. In Python, the for statement 
is designed to work with a sequence of data items. When the statement executes, it iterates 
once for each item in the sequence. Here is the general format: 

for variable in [valuel, value2, etc.]: 

statement 

statement 

etc. 

We will refer to the first line as the for clause. In the f o r  clause, v a r i a b l e  is the name 
of a variable. Inside the brackets a sequence of values appears, with a comma separating 
each value. (In Python, a comma-separated sequence of data items that are enclosed in a set 
of brackets is called a list. In Chapter 8 you will learn more about lists.) Beginning at the 
next line is a block of statements that is executed each time the loop iterates. 

The f o r  statement executes in the following manner: The v a r i a b l e  is assigned the first 
value in the list, and then the statements that appear in the block are executed. Then, 
v a r i a b l e  is assigned the next value in the list, and the statements in the block are exe- 
cuted again. This continues until v a r i a b l e  has been assigned the last value in the list. 
Program 5-5 shows a simple example that uses a for loop to display the numbers 1 
through 5. 

Program 5-5 (simple-loop1 .py) 

# This program demonstrates a simple for loop 
# that uses a list of numbers. 

def main( ) : 

print ' I will display the numbers 1 thrdugh 5. ' 
for num in [I, 2, 3, 4, 5 1 :  

print num 

# Call the main function. 

main ( ) 

display 

Program Output 

the numbers 1 through 5. 

3 

4 

5 

The first time the for loop iterates, the num variable is assigned the value 1 and then the 
p r i n t  statement in line 7 executes (displaying the value 1). The next time the loop iterates, 



5.3 The for Loop: a Count-Controlled Loop 163 

nurn is assigned the value 2, and the p r i n t  statement executes (displaying the value 2). 
This process continues, as shown in Figure 5-5, until num has been assigned the last value 
in the list. Because the list contains five values, the loop will iterate five times. 

Python programmers commonly refer to the variable that is used in the fo r  clause as the 
target variable because it is the target of an assignment at the beginning of each loop 
iteration. 

Flgere 5-5 The for  loop 

I st iteration: for nurn i n  [1, 2, 3 ,  4, 51 : 
p r l n t  nurn 

2nd iteration: for num i n  11, 2 ,  3, 4, 5 I : 
p r i n t  nurn 

3rd iteration: for n;rn i n  [I, 2 ,  3, 4, 51 : 
p r i n t  nurn 

4th iteration: for num in [ 1, 2, 3 ,  4, 5 I : 
p r i n t  nurn 

\ 

5th iteration: for num i n  [I, 2, 3 ,  4, 51 : 
p r i n t  nurn 

The values that appear in the list do not have to be a consecutively ordered series of num- 
bers. For example, Program 5-6 uses a for  loop to display a list of odd numbers. There are 
five numbers in the list, so the loop iterates five times. 

Program 5-,6 (simple-loop2.py) 

# This program also demonstrates a simple for 

# loop that uses a list of numbers. 
9 

def main( ) : 
print 'I will display the odd numbers 1 through 9. ' 
for nurn in [ I ,  3, 5, 7 ,  9 1 :  

print num 

# Call the main function. 

main ( ) 



164 Chapter 5 Repetition Structures 

Program Output 
I will display the odd numbers 1 through 9. 

1 

3 

5 

7 

9 

Program 5-7 shows another example. In this program the f o r  loop iterates over a list of 
strings. Notice that the list (in line 5 )  contains the three strings 'Winken', 'Blinken', and 
'Nod'. As a result, the loop iterates three times. 

Program 5-7 (simple-loop3.py) 

1 # This program also demonstrates a simple for 
2 # loop that uses a list of numbers. 

3 
4 def main( ) : 

5 for name in ['Winken', 'Blinken', 'Nod']: 
6 print name 
7 

8 # Call the main function. 
9 main( ) 

Program Output 
W 
B L L I L ~ C ~ L  

Nod 

Using the range Function the  for  koep 

Python provides a built-in function named r a n g e  that simplifies the process of writ- 
ing a count-controlled f o r  loop. Here is an example of a f o r  loop that uses the r a n g e  
function: 

for num in range ( 5 ) : 

print num 

Notice that instead of using a list of values, we call to the r a n g e  function passing 5 as an 
argument. In this statement the r a n g e  function will generate a list of integers in the range 
of 0 up to (but not including) 5. This code works the same as the following: 

for num in [O, 1, 2, 3, 41: 
print num 



5.3 The for Loop: a Count-Controlled Loop 165 

As you can see, the list contains five numbers, so the loop will iterate five times. Program 5-8 
uses the range  function with a f o r  loop to display "Hello world" five times. 

# This program demonstrates how the range 
# function can be used with a for loop. 

def main ( ) : 

# Print a message five times. 
for x in range ( 5) : 

print 'Hello world! ' 

# call the main function. 

main ( ) 

Llo wor. 

110 wor 

Program Output 

Hello war?-' 

He: 

He' 

Hello world 

He. Id 

If you pass one argument to the range  function, as demonstrated in Program 5-8, that 
argument is used as the ending limit of the list. If you pass two arguments to the range  
function, the first argument is used as the starting value of the list and the second argument 
is used as the ending limit. Here is an example: 

for num in range(1, 5): 

print num 

This code will display the following: 

By default, the range  function produces a list of numbers that increase by 1 for each suc- 
cessive number in the list. If you pass a third argument to the range  function, that argu- 
ment is used as step value. Instead of increasing by 1, each successive number in the list will 
increase by the step value. Here is an example: E 

for num in range(1, 10, 2): 

print num 

In this f o r  statement, three arguments are passed to the r a n g e  function: 

* The first argument, 1, is the starting value for the list. 
* The second argument, 10, is the ending limit of the list. This means that the last num- 

ber in the list will be 9. 



e The third argument, 2, is the step value. This means that 2 will be added to each suc- 
cessive number in the list. 

This code will display the following: 

In a f o r  loop, the purpose of the target variable is to reference each item in a sequence of 
items as the loop iterates. In many situations it is helpful to use the target variable in a cal- 
culation or other task within the body of the loop. For example, suppose you need to write 
a program that displays the numbers 1 through 10 and their squares, in a table similar to 
the following: 

Number Square 

This can be accomplished by writing a f o r  loop that iterates over the values 1 through 10. 
During the first iteration, the target variable will be assigned the value 1, during the second 
iteration it will be assigned the value 2, and so forth. Because the target variable will refer- 
ence the values 1 through 10 during the loop's execution, you can use it in the calculation 
inside the loop. Program 5-9 shows how this is done. 

Program 5-9   squares.^^) 

1 # This program uses a loop t o  d i s p l a y  a 
2 # t a b l e  showing t h e  numbers 1 through 1 0  

3 # and t h e i r  Squares. 

4 



5.3 The for Loop: a Count-Controlled Loop 167 

def main( ) : 

# Print the table headings. 
print 'Number\tSquarel 
print '--------------I 

# Print the numbers 1 through 10 

# and their squares. 

for number in range(1, 11): 

square = number**2 

print number, ' \t ' , square 

# Call the main function. 

main ( ) 

First, take a closer look at line 7, which displays the table headings: 

print 'Number\tSquarel 

Notice that inside the string literal the \t escape sequence between the words Number 
and Square. Recall from Chapter 2 that the \t escape sequence is like pressing the 
Tab key; it causes the output cursor to move over to the next tab position. This 
causes the spaces that you see between the words Number and Square in the sample 
output. 

The f o r  loop that begins in line 12 uses the r a n g e  function to produce a list containing 
the numbers 1 through 10. During the first iteration, number will reference 1, during the 
second iteration number will reference 2, and so forth, up to 10. Inside the loop, the state- 
ment in line 13 raises number to the power of 2 (recall from Chapter 2 that * * is the expo- 
nent operator), and assigns the result to the s q u a r e  variable. The statement in line 14 
prints the value referenced by number, tabs over, and then prints the value referenced by 
square .  (Tabbing over with the \t escape sequence causes the numbers to be aligned in 
two columns in the output.) 

Figure 5-6 shows how we might draw a flowchart for this program. 



168 Chapter 5 Repetition Structures 

r e  - 6  Flowchar? for Program 5-9 

Display Table Headings 

Is there another 
alue in the list? 

No (False) 

I square = number**2 I 

ir values 
les per hc 

convertec 
3ur is: 

per ~ O L  





In many cases, the programmer knows the exact number of iterations that a loop must per- 
form. For example, recall Program 5-9, which displays a table showing the numbers 1 
through 10 and their squares. When the code was written, the programmer knew that the 
loop had to iterate over the values 1 through 10. 

Sometimes the programmer needs to let the user control the number of times that a loop 
iterates. For example, what if you want Program 5-9 to be a bit more versatile by allowing 
the user to specify the maximum value displayed by the loop? Program 5-11 shows how 
you can accomplish this. 

1 # This program uses a loop to display a 
2 # table of numbers and their squares. 

3 

4 def main( ) : 

5 # Get the ending limit. 
6 print 'This program displays a list of numbers' 
7 print ' (starting at 1) and their squares. ' 
8 end = input( 'How high should I go? ' ) 
9 

10 # Print the table headings. 
11 print 'Number\tSquare1 
12 print '-----------------I 

13 

1 4 # Print the numbers and their squares. 
15 for number in range ( 1, end + 1 ) : 
16 square = number**2 
17 print number, ' \t ' , square 
18 

1 9  # Call the main function. 
20 main() 



5.3 The for Loop: a Count-Controlled Loop 171 

is prog. 
tarting 
u~ high 

nber 

ram dis] 
at 1) 
should 

This program asks the user to enter a value that can be used as the ending limit for the list. 
This value is assigned to the end variable in line 8. Then, the expression end  + 1 is used in 
line 15 as the second argument for the r a n g e  function. (We have to add one to end 
because otherwise the list would go up to, but not include, the value entered by the user.) 

Program 5-12 shows an example that allows the user to specify both the starting value and 
the ending limit of the list. 

# This program uses a loop to display a 
# table of numbers and their squares. 

def main( ) : 
# Get the starting value. 
print 'This program displays a list of numbers' 
print ' and their squares. ' 
start = input ( 'Enter the starting number: ' ) 

# Get the ending limit. 
end = input('How high should I go? ' )  

# Print the table headings. 

print 
print 'Number\tSquarel 
print '--------------I 

# Print the numbers and their squares. 
for number in range ( start, end + 1 ) : 

square = number**2 
print number, ' \t , square 

# Call the main function. 

main ( ) 



172 Chapter 5 Repetition Structures 

This pr 

and the 

Enter t 

ogram d 
ir squa 

he star 

In the examples you have seen so far, the r a n g e  function was used to generate a list with 
numbers that go from lowest to highest. Alternatively, you can use the r a n g e  function to 
generate lists of numbers that go from highest to lowest. Here is an example: 

In this function call, the starting value is 10, the list's ending limit is 0, and the step value 
is -1. This expression will produce the following list: 

Here is an example of a f o r  loop that prints the numbers 5 down to 1: 

for num in range ( 5, 0, -1 ) : 

print num 

pj Checkpoint 

5.8 Rewrite the following code so it calls the r a n g e  function instead of using the list 
[ O r  11 21  3 1  4 1  51. 

for x in [Or 1, 2, 3, 4, 51: 

print 'I love to program! ' 

5.9 What will the following code display? 

for number in range ( 6 ) : 

print number 

5.10 What will the following code display? 

for number in range ( 2, 6 ) : 

print number 

5.11 What will the following code display? 

for number in range(0, 501, 100): 

print number 

5.12 What will the following code display? 

for number in range(l0, 5, -1): 

print number 



5.4 Calculating a Running Total 173 

CONCEPT: A running total is a sum of numbers that accumulates with each itera- 
tion of a loop. The variable used to keep the running total is called an 
accumulator. 

Many programming tasks require you to calculate the total of a series of numbers. For 
example, suppose you are writing a program that calculates a business's total sales for a 
week. The program would read the sales for each day as input and calculate the total of 
those numbers. 

Programs that calculate the total of a series of numbers typically use two elements: 

0 '  A loop that reads each number in the series. 
0 A variable that accumulates the total of the numbers as they are read. 

The variable that is used to accum~~late the total of the numbers is called an accumulator. It is 
often said that the loop keeps a running total because it accumulates the total as it reads each 
number in the series. Figure 5-7 shows the general logic of a loop that calculates a running total. 

E R y p ~ %  5-7 Logic for calculatin~ a running tots1 

Set accumulator to 0 r--l 

Is there another 
Read the next number Add the number to the 

number to read? accumulator 

When the loop finishes, the accumulator will contain the total of the numbers that were 
read by the loop. Notice that the first step in the flowchart is to set the accumulator vari- 
able to 0. This is a critical step. Each time the loop reads a number, it adds it to the accu- 
mulator. If the accumulator starts with any value other than 0, it will not contain the cor- 
rect total when the loop finishes. 

Let's look at a program that calculates a running total. Program 5-13 allows the user to 
enter five numbers, and it displays the total of the numbers entered. 



# This program calculates the sum of 
# five numbers entered by the user. 

def main(): 

# Initialize an accumulator variable. 
total = 0.0 

# Explain what we are doing. 
print 'This program calculates the sum of' 

print ' five numbers you will enter. ' 

# Get five numbers and accumulate them. 
for counter in range(5): 

number = input ( ' Enter a number : ' ) 

total = total + number 

# Display the total of the numbers. 
print 'The total is ' , total 

# Call the main function. 
main ( ) 

ive num 

nter a 

nter a 

bers yo 

number : 

number : 

u will 

I [Entel 
2 [Enten 

number : 

number : 

4 [Enter 
5 [Entec 

The t o t a l  variable, created by the assignment statement in line 6, is the accumulator. 
Notice that it is initialized with the value 0.0. The f o r  loop, in lines 13 through 15, does 
the work of getting the numbers from the user and calculating their total. Line 14 prompts 
the user to enter a number, and then assigns the input to the number variable. Then, the 
following statement in line 15 adds number to t o t a l :  

total = total + number 

After this statement executes, the value referenced by the number variable will be added to 
the value in the t o t a l  variable. It's important that you understand how this statement 
works. First, the interpreter gets the value of the expression on the right side of the = 

o p e r a t o r ,  which is t o t a l  + number. Then, that value is assigned by the = operator to 
the t o t a l  variable. The effect of the statement is that the value of the number variable is 



5.4 Calculating a Running Total 175 

added to the t o t a l  variable. When the loop finishes, the t o t a l  variable will hold the sum 
of all the numbers that were added to it. This value is displayed in line 18. 

The Augmented Assignment O ~ e ~ a : 6 " $ ~ ~  

Quite often, programs have assignment statements in which the variable that is on the left 
side of the = operator also appears on the right side of the = operator. Here is an example: 

On the right side of the assignment operator, 1 is added to x. The result is then assigned to 
x, replacing the value that x  previously referenced. Effectively, this statement adds 1 to x. 
You saw another example of this type of statement in Program 5-14: 

tbtal = total + number 

This statement assigns the value of t o t a l  + number to t o t a l .  As mentioned before, the 
effect of this statement is that number is added to the value of t o t a l .  Here is one more 
example: 

balance = balance - withdrawal 

This statement assigns the value of the expression b a l a n c e  - w i t h d r a w a l  to ba lance .  
The effect of this statement is that w i t h d r a w a l  is subtracted from ba lance .  

Table 5-1 shows other examples of statements written this way. 

Table 5-1 Various assignment statements (assume x = 6 in each statement) 

Statement What It Does Value of x after the Statement 

x = x + 4  Add 4 to x  10 

x = x - 3  Subtracts 3 from x  3 

x = x * l O  Multiplies x  by 10 60 

x = x / 2  Divides x  by 2 3 

x = x % 4  Assigns the remainder of x  / 4  to x  2 

These types of operations are common in programming. For convenience, Python offers a 
special set of operators designed specifically for these jobs. Table 5-2 shows the augmented 
assignment operators. 

Table 5-2 Augmented assignment operators 

Operator Example Usage Equivalent To 

+= x  += 5  x = x + 5  



176 Chapter 5 Repetition Structures 

As you can see, the augmented assignment operators do not require the programmer to type 
the variable name twice. The following statement: 

total = total + number 

could be rewritten as 

total += number 

Similarly, the statement 

balance = balance - withdrawal 

could be rewritten as 

balance -= withdrawal; 

heckpoint 

5.13 What is an accumulator? 

5.14 Should an accumulator be initialized to any specific value? Why or why not? 

5.15 What will the following code display? 

total = 0 

for count in range(1, 6): 

total = total + count 
print total 

5.16 What will the following code display? 

numberl = 10 

number2 = 5 

numberl = numberl + number2 
print numberl 

print number2 

5.17 Rewrite the following statements using augmented assignment operators: 

a)  q u a n t i t y  = q u a n t i t y  + 1 
b) d a y s  - l e f t  = d a y s  - l e f t  - 5 
c) p r ice  = pr ice  * 1 0  
d) p r ice  = pr ice  / 2 

Sentinels 

L- C 0 N C E PT: A sentinel is a special value that marks the end of a sequence of values. 

Consider the following scenario: You are designing a program that will use a loop to 
process a long sequence of values. At the time you are designing the program, you do not 
know the number of values that will be in the sequence. In fact, the number of values in the 
sequence could be different each time the program is executed. What is the best way to 
design such a loop? Here are some techniques that you have seen already in this chapter, 
along with the disadvantages of using them when processing a long list of values: 



5.5 Sentinels 177 

Simply ask the user, at the end of each loop iteration, if there is another value to 
process. If the sequence of values is long, however, asking this question at the end of 
each loop iteration might make the program cumbersome for the user. 

9 Ask the user at the beginning of the program how many items are in the sequence. This 
might also inconvenience the user, however. If the sequence is very long, and the user 
does not know the number of items it contains, it will require the user to count them. 

When processing a long sequence of values with a loop, perhaps a better technique is to use a 
sentinel. A sentinel is a special value that marks the end of a sequence of items. When a program 
reads the sentinel value, it knows it has reached the end of the sequence, so the loop terminates. 

For example, suppose a doctor wants a program to calculate the average weight of all her 
patients. The program might work like this: A loop prompts the user to enter either a 
patient's weight, or 0 if there are no more weights. When the program reads 0 as a weight, 
it interprets this as a signal that there are no more weights. The loop ends and the program 
displays the average weight. 

A sentinel value must be distinctive enough that it will not be mistaken as a regular value 
in the sequence. In the example cited above, the doctor (or her medical assistant) enters 0 
to signal the end of the sequence of weights. Because no patient's weight will be 0, this is a 
good value to use as a sentinel. 





5.6 Input Validation Loops 179 

Checkpoint 

5.18 What is a sentinel? 

5.19 Why should you take care to choose a distinctive value as a sentinel? 

a_ CONCEPT: Input validation is the process of inspecting data that has been input to 
a program, to malze sure it is valid before it is used in a computation. 
Input validation is commonly done with a loop that iterates as long as an 
input variable references bad data. 

One of the most famous sayings among computer programmers is "garbage in, garbage 
out." This saying, sometimes abbreviated as GIGO, refers to the fact that computers can- 
not tell the difference between good data and bad data. If a user provides bad data as input 
to a program, the program will process that bad data and, as a result, will produce bad data 
as output. For example, look at the payroll program in Program 5-15 and notice what hap- 
pens in the sample run when the user gives bad data as input. 

# This program displays gross pay. 
def main(): 

# Get the number of hours worked. 
hours = input( 'Enter the hours worked this week: ' )  

# Get the hourly pay rate. 

pay-rate = input('Enter the hourly pay rate: ' ) 

# Calculate the gross pay. 
gross-pay = hours * pay-rate 

# Display the gross pay. 

print 'The gross pay is $%.2f. ' % gross-pay 

# Call the main function. 

main ( ) 

Program Output (with input shown in bold) 

Enter the hours worked this week: 400 [Enter] 
E I 3 hourly pay r, 
TI ; pay is $8000 
~ t e r  thc 
1e grosi 

ate: 20 

Did you spot the bad data that was provided as input? The person receiving the paycheck 
will be pleasantly surprised, because in the sample run the payroll clerk entered 400 as the 



180 Chapter 5 Repetition Structures 

number of hours worked. The clerk probably meant to enter 40, because there are not 400 
hours in a week. The computer, however, is unaware of this fact, and the program processed 
the bad data just as if it were good data. Can you think of other types of input that can be 
given to this program that will result in bad output? One example is a negative number 
entered for the hours worked; another is an invalid hourly pay rate. 

Sometimes stories are reported in the news about computer errors that mistakenly cause 
people to be charged thousands of dollars for small purchases or to receive large tax refunds 
that they were not entitled to. These "computer errors" are rarely caused by the computer, 
however; they are more commonly caused by bad data that was read into a program as 
input. 

The integrity of a program's output is only as good as the integrity of its input. For this rea- 
son, you should design your programs in such a way that bad input is never accepted. When 
input is given to a program, it should be inspected before it is processed. If the input is 
invalid, the program should discard it and prompt the user to enter the correct data. This 
process is known as input validatiofz. 

Figure 5-8 shows a common technique for validating an item of input. In this technique, 
the input is read, and then a loop is executed. If the input data is bad, the loop executes its 
block of statements. The loop displays an error message so the user will know that the input 
was invalid, and then it reads the new input. The loop repeats as long as the input is bad. 

Figure 5-8 Logic containing an input validation loop 

Get the input again 

(False) 

Notice that the flowchart in Figure 5-8 reads input in two places: first just before the 
loop and then inside the loop. The first input operation-just before the loop-is called 
a priming read, and its purpose is to get the first input value that will be tested by 
the validation loop. If that value is invalid, the loop will perform subsequent input 
operations. 



5.6 Input Validation Loops 181 

Let's consider an example. Suppose you are designing a program that reads a test score and 
you want to make sure the user does not enter a value less than 0. The following code shows 
how you can use an input validation loop to reject any input value that is less than 0. 

# Get a test score. 

score = input('Enter a test score: ' )  

# Make sure it is not less than 0. 

while score < 0: 
print 'ERROR: The score cannot be negative. ' 

score = input ( 'Enter the correct score: ' ) 

This code first prompts the user to enter a test score (this is the priming read), and then the 
while loop executes. Recall that the while loop is a pretest loop, which means it tests the 
expression score < O before performing an iteration. If the user entered a valid test score, 
this expression will be false and the loop will not iterate. If the test score is invalid, however, 
the expression will be true and the loop's block of statements will execute. The loop dis- 
plays an error message and prompts the user to enter the correct test score. The loop will 
continue to iterate until the user enters a valid test score. 

This code rejects only negative test scores. What if you also want to reject any test scores 
that are greater than loo? You can modify the input validation loop so it uses a compound 
Boolean expression, as shown next. 

# Get a test score. 

score = input ( 'Enter a test score : ' ) 

# Make sure it is not less than 0 or greater than 100. 

while score < 0 or score > 100: 

print 'ERROR: The score cannot be negative' 

print 'or greater than 100. ' 

score = input ( 'Enter the correct score : ' ) 

The loop in this code determines whether score is less than 0 or greater than 100. If either 
is true, an error message is displayed and the user is prompted to enter a correct score. 







nter thj 
RROR: t 

. . 
e item' 
he cost 

s whole 
cannot 

sale co 
be neg 

st: -.SO 
ative . 
- - L .  n r 

he reta 

o you h 

il pric 

ave ano 

e is $1 
ther it 

. 2 5 .  

em? (En ter y f or yes) 

Checkpoint 

5.20 What does the phrase "garbage in, garbage out" mean? 
5.21 Give a general description of the input validation process. 

5.22 Describe the steps that are generally taken when an input validation loop is used 
to validate data. 

5.23 What is a priming read? What is its purpose? 
5.24 If the input that is read by the priming read is valid, how many times will the 

input validation loop iterate? 

Nested Loops 

CONCEPT: A loop that is inside another loop is called a nested loop. 

A nested loop is a loop that is inside another loop. A clock is a good example of something 
that works like a nested loop. The second hand, minute hand, and hour hand all spin 
around the face of the clock. The hour hand, however; only makes 1 revolution for every 
12 of the minute hand's revolutions. And it takes 60 revolutions of the second hand for the 
minute hand to make 1 revolution. This means that for every complete revolution of the 
hour hand, the second hand has revolved 720 times. Here is a loop that partially simulates 
a digital clock. It displays the seconds from 0 to 59: 

for seconds in range ( 6 0  ) : 

print seconds 

We can add a m i n u t e s  variable and nest the loop above inside another loop that cycles 
through 60 minutes: 

for minutes in range ( 6 0  ) : 

for seconds in range ( 6 0  ) : 

print minutes, ' : ' , seconds 
To make the simulated clock complete, another variable and loop can be added to count the hours: 

for hours in range (24 ) : 

for minutes in range ( 60 ) : 
for seconds in range ( 6 0  ) : 

print hours, ' : ' , minutes, ' : ' , seconds 



5.7 Nested Loops 185 

This code's output would be: 

0 :o :o  

0 :O: l  

0 :0 :2  

(The program will count through each second o f  24 hours.) 

23:59:59 

The innermost loop will iterate 60 times for each iteration of the middle loop. The middle 
loop will iterate 60 times for each iteration of the outermost loop. When the outermost loop 
has iterated 24 times, the middle loop will have iterated 1440 times and the innermost loop 
will have iterated 86,400 times! Figure 5-9 shows a flowchart for the complete clock sim- 
ulation program previously shown. 

E t q ~ ~ a e  5-9 Flowchart for a clock simulator 



186 Chapter 5 Repetition Structures 

The simulated clock example brings up a few points about nested loops: 

* An inner loop goes through all of its iterations for every single iteration of an outer 
loop. 
Inner loops complete their iterations faster than outer loops. 
To get the total number of iterations of a nested loop, multiply the number of itera- 
tions of all the loops. 

, decisior 
. count 

. count 

ach reper 
. cycle 
. revolut~ 
. orbit 
. iteratio 

'he whil 

. no-test 

. prequal 

. ~ o s t  ite 

. intermi 
. infinite 

&1... - 1  .- 

'he -= o p ~  
. relatior 











/ 6.1 introduction to Value-Returning 6.2 Writing Your Own Functions 
I Functions: Generating Random 6.3 The m a t h  Module 
I 
I 

Numbers 6.4 Storing Functions in Modules 

- 
C 0 N C E PT: A value-returning function is a function that returns a value back to the 

part of the program that called it. Python, as well as most other pro- 
gramming languages, provides a library of prewritten functions that per- 
form commonly needed tasks. These libraries typically contain a function 
that generates random numbers. 

In Chapter 3 you learned about simple functions. A simple function is a group of statements 
that exist within a program for the purpose of performing a specific task. When you need 
the function to perform its task, you call the function. This causes the statements inside the 
function to execute. When the function is finished, control of the program returns to the 
statement appearing immediately after the function call. 

A value-returning function is a special type of function. It is like a simple function in the 
following ways. 

It is a group of statements that perform a specific task. 
When you want to execute the function, you call it. 

When a value-returning function finishes, however, it returns a value back to the part of the 
program that called it. The value that is returned from a function can be used like any other 
value: it can be assigned to a variable, displayed on the screen, used in a mathematical 
expression (if it is a number), and so on. 



192 Chapter 6 Value-Returning Functions and Modules 

Standard ktbsaq Functions 
Python, as well as most other programming languages, comes with a standard library of 
functions that have already been written for you. These functions, known as library func- 
tions, make a programmer's job easier because they perform many of the tasks that pro- 
grammers commonly need to perform. In fact, you have already used several of Python's 
library functions. Some of the functions that you have used are i n p u t ,  raw- input, and 
range.  Python has many other library functions. Although we won't cover them all in this 
book, we will discuss library functions that perform fundamental operations. 

Some of Python's library functions are built into the Python interpreter. If you want to use 
one of these built-in functions in a program, you simply call the function. This is the case 
with the i n p u t ,  raw- input, range,  and other functions that you have already learned 
about. Many of the functions in the standard library, however, are stored in files that are 
known as modules. These modules, which are copied to your computer when you install 
Python, help organize the standard library functions. For example, functions for performing 
math operations are stored together in a module, functions for working with files are stored 
together in another module, and so on. In order to call a function that is stored in a module, 
you have to write an impor t  statement at the top of your program. An impor t  statement 
tells the interpreter the name of the module that contains the function. 

Because you do not see the internal workings of library functions, many programmers think 
of them as black boxes. The term "black box" is used to describe any mechanism that 
accepts input, performs some operation (that cannot be seen) using the input, and produces 
output. Figure 6-1 illustrates this idea. 

Figure 6-1 A library function viewed as a black box 

Input Output 

This section demonstrates how f~~nctions work by looking at standard library functions 
that generate random numbers, and some interesting programs that can be written with 
them. Then you will learn to write your own value-returning f~~nctions and how to create 
your own modules. The last section in this chapter comes back to the topic of library func- 
tions and looks at several other useful functions in the Python standard library. 

Generating Random Numbers 

Random numbers are useful for lots of different programming tasks. The following are just 
a few examples. 

0 Random numbers are commonly used in games. For example, computer games that 
let the player roll dice use random numbers to represent the values of the dice. 
Programs that show cards being drawn from a shuffled deck use random numbers to 
represent the face values of the cards. 

* Random numbers are useful in simulation programs. In some simulations, the com- 
puter must randomly decide how a person, animal, insect, or other living being will 



6.1 introduction to Value-Returning Functions: Generating Random Numbers 193 

behave. Formulas can be constructed in which a random number is used to determine 
various actions and events that take place in the program. 

* Random numbers are useful in statistical programs that must randomly select data for 
analysis. 

* Random numbers are commonly used in computer security to encrypt sensitive data. 

Python provides several library functions for working with random numbers. These func- 
tions are stored in a module named random in the standard library. To use any of these 
functions you first need to write this i m p o r t  statement at the top of your program: 

import random 

This statement causes the interpreter to load the contents of the random module into 
memory. This makes all of the functions in the random module available to your program' 

The' first random-number generating function that we will discuss is named r a n d i n t .  
Because the r a n d i n t  function is in the random module, we will need to use dot notation 
to refer to it in our program. In dot notation, the function's name is random. r a n d i n t .  
On the left side of the dot (period) is the name of the module, and on the right side of the 
dot is the name of the function. 

The following statement shows an example of how you might call the r a n d i n t  function. 

number = random.randint(1, 100) 

The part of the statement that reads random. r a n d i n t  ( 1, 100 ) is a call to the r a n d i n t  
function. Notice that two arguments appear inside the parentheses: 1 and 100. These argu- 
ments tell the function to give an integer random number in the range of 1 through 100. (The 
values 1 and 100 are included in the range.) Figure 6-2 illustrates this part of the statement. 

Flqukgl 6-2 A statement that calls the random function 

T lirgurnents 
number = random. randint (1, 100) 

I 
Function call 

Notice that the call to the r a n d i n t  f~lnction appears on the right side of an = operator. 
When the function is called, it will generate a random number in the range of 1 through 100 
and then return that number. The number that is returned will be assigned to the number 
variable, as shown in Figure 6-3. 

Program 6-1 shows a complete program that uses the r a n d i n t  function. The state- 
ment in line 2 generates a random number in the range of 1 througfi 10  and assigns it 
to the number variable. (The program output shows that the number 7 was generat- 
ed, but this value is arbitrary. If this were an actual program, it could display any num- 
ber from 1 to 10.) 

'There are several ways to write an import statement in Python, and each variation worlcs a little differently. 
Many Python programmers agree that the preferred way to import a module is the way shown in this boolc. 



194 Chapter 6 Value-Returning Functions and Modules 

%=~i?re 6-3 The random function returns a \lialue 

number = random. r a n d i n t  (1, 1 0 0 )  

A random number in the range of 
1 through 100 will be assigned to 

the number variable. 

# This program displays a random number 
# in the range of 1 through 10. 
import random 

def main ( ) : 
# Get a random number. 

number = random.randint(1, 10) 

# Display the number. 
print 'The number is ' , number 

# Call the main function. 
main ( ) 

Program Output 

The number is 7 

Program 6-2 shows another example. This program uses a for loop that iterates five times. 
Inside the loop, the statement in line 8 calls the r a n d i n t  function to generate a random 
number in the range of 1 through 100. 

(random-num bers2.p~) 

# This program displays five random 

# numbers in the range of 1 through 100. 
import random 

def main(): 
for count in range ( 5 ) : 

# Get a random number. 

number = random.randint(1, 100) 
# Display the number. 

print number 

# Call the main function. 
main ( ) 



6.1 Introduction to Value-Returning Functions: Generating Random Numbers 195 

Program Output 

8 9 
- 
/ 

i 6 

4 1 

12 

Both Programs 6-1 and 6-2 call the r a n d i n t  function and assign its return value to the 
number variable. If you just want to display a random number, it is not necessary to assign 
the random number to a variable. You can send the random function's return value directly 
to the p r i n t  statement, as shown here: 

print random.randint(1, 10) 

when this statement executes, the r a n d i n t  function is called. The function generates a 
random number in the range of 1 through 10. That value is returned and then sent to the 
p r i n t  statement. As a result, a random number in the range of 1 through 10 will be dis- 
played. Figure 6-4 illustrates this. 

Figure 6-4 Displaying a random number 

p r i n t  random. r a n d i n t  (1, 1 0 )  

A random number in the range of 
1 through 10 will be displayed. 

Program 6-3 shows how you could simplify Program 6-2. This program also displays five 
random numbers, but this program does not use a variable to hold those numbers. The 
r a n d i n t  function's return value is sent directly to the p r i n t  statement in line 7. 

Program 6-3 (random-num bers3.p~) 

1 # This program displays five random 
2 # numbers in the range of 1 through 100. 

3 import random 

4 

5 def main( ) : 

6 for count in range (5 ) : 

7 " print random.randint(1, 100) 

8 

9 # Call the main function. 

10 main() 

Progpam Output 

8 9 

7 

1 6  

4 1 

12 





The r a n d i n t  function returns an integer value, so you can write a call to the function any- 
where that you can write an integer value. You have already seen examples where the func- 
tion's return value is assigned to a variable and where the function's return value is sent to 
the p r i n t  statement. To further illustrate the point, here is a statement that uses the 
r a n d i n t  function in a math expression: 

In this statement, a random number in the range of 1 through 10 is generated and then mul- 
tiplied by 2. The result is a random integer from 2 to 20 assigned to the x variable. You can 
also test the return value of the function with an i f  statement, as demonstrated in the fol- 
lowing In the Spotlight section. 



The standard library's random module contains numerous functions for working with 
random numbers. In addition to the r a n d i n t  function, you might find the randrange,  
random, and un i fo rm functions useful. (To use any of these functions you need to write 
impor t  random at the top of your program.) 

If you remember how to use the r a n g e  function (which we discussed in Chapter 5) then 
you will immediately be comfortable with the r a n d r a n g e  function. The r a n d r a n g e  
function takes the same arguments as the r a n g e  function. The difference is that the 
r andrange  function does not return a list of values. Instead, it returns a randomly selected 
value from a sequence of values. For example, the following statement assigns a random 
number in the range of 0 through 9 to the number variable: 

number = random.randrange(l0) 

The argument, in this case 10, specifies the ending limit of the sequence of values. The func- 
tion will return a randomly-selected number from the sequence of values 0 up to, but not 



5.1 Introduction to Value-Returning Functions: Generating Random Numbers 199 

including, the ending limit. The following statement specifies both a starting value and an 
ending limit for the sequence: 

number = random.randrange(5, 10) 

When this statement executes, a random number in the range of 5 through 9 will be 
assigned to number. The following statement specifies a starting value, an ending limit, and 
a step value: 

number = random.randrange(0, 101, 10) 

In this statement the r a n d r a n g e  function returns a randomly selected value from the fol- 
lowing sequence of numbers: 

[0, 10, 20, 30, 40, 50, 60, 70, 80, PO, 1001 

Both the r a n d i n t  and the r a n d r a n g e  functions return an integer number. The random 
function returns, however, returns a random floating-point number. You do not pass any 
arguments to the random function. When you call it, it returns a random floating point 
number in the range of 0.0 up to 1.0 (but not including 1.0). Here is an example: 

number = random.random() 

The un i fo rm function also returns a random floating-point number, but allows you to 
specify the range of values to select from. Here is an example: 

number = random.uniform(l.0, 10.0) 

In this statement the un i fo rm function returns a random floating-point number in the 
range of 1.0 through 10.0 and assigns it to the number variable. 

Checkpoint 

6.1 How does a value-returning function differ from the simple functions we discussed 
in Chapter 3? 

6.2 What is a library function? 

6.3 .Why are library functions like "black boxes"? 

6.4 What does the following statement do? 

x = r a n d o m . r a n d i n t ( 1 ,  100)  

~ 6.5 What does the following statement do? 

p r i n t  r a n d o m . r a n d i n t ( 1 ,  20 )  

6.6 What does the following statement do? 

p r i n t  r andom. randrange( l0 ,  20 )  

6.7 What does the following statement do? 

p r i n t  random.random() 

6.8 What does the following statement do? 

p r i n t  random.uniform(0.1 ,  0 . 5 )  



200 Chapter 6 Value-Returning Functions and Modules 

- 60NC EPT: A value-returning function has a return statement that returns a value 
back to the part of the program that called it. 

You write a value-returning function in the same way that you write a simple function, with 
one exception: a value-returning function must have a r e t u r n  statement. Here is the gen- 
eral format of a value-returning function definition in Python: 

def function-name ( ) : 

statement 

statement 

etc. 
return expression 

One of the statements in the function must be a r e t u r n  statement, which takes the follow- 
ing form: 

return expression 

The value of the expression that follows the key word r e t u r n  will be sent back to the 
part of the program that called the function. This can be any value, variable, or expression 
that has a value (such as a math expression). 

Here is a simple example of a value-returning function: 

def sum(num1, num2 ) : 

result = numl + num2 
return result 

Figure 6-5 illustrates various parts of the function. 

"lav-t.. 6-5 Pasts of the fca~ction 

The name of this numl and num2 are 
function is sum. parameters. 

def sum (numl, num2) : 
result = numl + num2 This function returns 
return result 4 the value referenced by 

the result variable. 

The purpose of this function is to accept two integer values as arguments and return their 
sum. Let's take a closer look at how it works. The first statement in the function's block 
assigns the value of numl + num2 to the r e s u l t  variable. Next, the r e t u r n  statement 
executes, which causes the function to end execution and sends the value referenced by the 
r e s u l t  variable back to the part of the program that called the function. Program 6-6 
demonstrates the function. 



6.2 Writing Your Own Value-Returning Functions 201 

Program 6-6 (total-ages.py) 

# This program uses the return value of a function. 

def main( ) : 

# Get the user's age. 
f irst-age = input ( ' Enter your age : ' ) 

# Get the user's best friend's age. 
second-age = input("Enter your best friend's age: " )  

# Get the sum of both ages. 
.total = sum(first-age, second-age) 

# Display the total age. 

print ' Together you are ' , total, ' years old. ' 

# The sum function accepts two numeric arguments and 

# returns the sum of those arguments. 
def sum(num1, num2 ) : 

result = numl + num2 
return result 

# Call the main function. 

main ( ) 

c age: 

c best 

Program Output (with input shown in bold) 

Enl !r] 
En1 3 age: 24 [Enter] 
Togetner you are r o  years old. 

In the main function, the program gets two values from the user and stores them in the 
first - age and second-age variables. The statement in line 11 calls the sum function, 
passing f irst-age and second-age as arguments. The value that is returned from the 
sum function is assigned to the total variable. I11 this case, the function will return 46. 
Figure 6-6 shows how the arguments are passed into the function, and how a value is 
'returned back from the function. 

FIQURE 6-6 Arquments ate passed to the sum function and a value is returned 
--- - 

total = sum(first-age, second-age) 

def sum(num1, num2): 
result = numl + num2 
return result 



202 Chapter 6 Value-Returning Functions and Modules 

Making t he  Mast of t he  return Statement 

Look again at the sum function presented in Program 6-6: 

de f sum ( numl , num2 ) : 
result = numl + num2 
return result 

Notice that two things happen inside this function: (1) the value of the expression numl + 
num2 is assigned to the r e s u l t  variable, and (2) the value of the r e s u l t  variable is 
returned. Although this function does what it sets out to do, it can be simplified. Because 
the r e t u r n  statement can return the value of an expression, you can eliminate the r e s u l t  
variable and rewrite the function as: 

def sum( numl , num2 ) : 
return numl + num2 

This version of the function does not store the value of numl + num2 in a variable. Instead, 
it takes advantage of the fact that the r e t u r n  statement can return the value of an expression. 
This version of the function does the same thing as the previous version, but in only one step. 

Value-returning functions provide many of the same benefits as simple functions: they sim- 
plify code, reduce duplication, enhance your ability to test code, increase the speed of devel- 
opment, and ease the facilitation of teamwork. 

Because value-returning functions return a value, they can be useful in specific situations. 
For example, you can use a value-returning function to prompt the user for input, and then 
it can return the value entered by the user. Suppose you've been asked to design a program 
that calculates the sale price of an item in a retail business. To do that, the program would 
need to get the item's regular price from the user. Here is a function you could define for 
that purpose: 

def get-regular-price(): 

price = input("Enter the item's regular price: " )  

return price 

Then, elsewhere in the program, you could call that function, as shown here: 

# Get the item's regular price. 

reg-price = get-regular-price() 

When this statement executes, the g e t  - r e g u l a r  - p r i c e  function is called, which gets a 
value from the user and returns it. That value is then assigned to the r e g  - p r i c e  variable. 

You can also use functions to simplify complex mathematical expressions. For example, 
calculating the sale price of an item seems like it would be a simple task: you calculate the 
discount and subtract it from the regular price. In a program, however, a statement that per- 
forms this calculation is not that straightforward, as shown in the following example. 
(Assume DISCOUNT PERCENTAGE is a global constant that is defined in the program, and 
it specifies the percentage of the discount.) 

sale-price = reg-price - (reg-price * DISCOUNT - PERCENTAGE) 



6.2 Writing Your Own Value-Returning Functions 203 

This statement isn't easy to understand because it performs so many steps: it calculates 
the discount amount, subtracts that value from reg-price, and assigns the result to 
sale - price. You could simplify the statement by breaking out part of the math expres- 
sion and placing it in a function. Here is a function named d i s c o u n t  that accepts an item's 
price as an argument and returns the amount of the discount: 

def discount(price): 
return price * DISCOUNT PERCENTAGE - 

You could then call the function in your calculation: 

sale-price = reg-price - discount(reg-price) 

This statement is easier to read than the one previously shown, and it is clearer that the dis- 
count is being subtracted from the regular price. Program 6-7 shows the complete sale price 
calculating program using the functions just described. 

3 # This program calculates a retail item's 
2 # sale price. 

3 

4 # DISCOUNT-PERCENTAGE is used as a global 
5 # constant for the discount percentage. 
6 DISCOUNT-PERCENTAGE = 0.20 

7 

8 # The main function. 
9 def main( ) : 

10 # Get the item's regular price. 
1. 1 reg-price = get-regular-price() 

12 

13 # Calculate the sale price. 
14 sale-price = reg-price - discount(reg-price) 

15 

16 # Display the sale price. 
17 print 'The sale price is $%. 2f. ' % sale-price 

3 8 .  
19 # The get-regular-price function prompts the 
20 .# user to enter an item's regular price and it 
21 # returns that value. 
22 def get-regular-price(): 

2 3 price = input("Enter the item's regular price: " )  

2 4 return price 

2 5 
26 # The discount function accepts an item's price 
27 # as an argument and returns the amount of the 
28 # discount, specified by DISCOUNT-PERCENTAGE. 
29 def discount(price): 

(program continues) 



204 Chapter 6 Value-Returning Functions and Modules 

Program 6-7 (continued) 

3 0 return price * DISCOUNT - PERCENTAGE 
3 1 

32 # Call the main function. 

33 main() 

Enter t 

The sall 

Program Output (with input shown in bold) 

he item's regular price: 100.00 rrnter] 
e price is $80.00 

An IPO chart is a simple but effective tool that programmers sometimes use for designing 
and documenting functions. IPO stands for input, processing, and output, and an IPO 
chart describes the input, processing, and output of a function. These items are usually laid 
out in columns: the input column shows a description of the data that is passed to the func- 
tion as arguments, the processing column shows a description of the process that the func- 
tion performs, and the output column describes the data that is returned from the function. 
For example, Figure 6-7 shows IPO charts for the g e t  - regular-price and d i s c o u n t  
functions that you saw in Program 6-7. 

F i g ~ ~ r e  6-7' iP4) charts for the aetRegularPrice and discount functions 

item's regular price 

DISCOUNT-PERCENTAGE. 



6.2 Writing Your Own Value-Returning Functions 205 

Notice that the IPO charts provide only brief descriptions of a function's input, processing, 
and output, but do not show the specific steps taken in a function. In many cases, however, 
IPO charts include sufficient information so that they can be used instead of a flowchart. 
The decision of whether to use an IPO chart, a flowchart, or both is often left to the pro- 
grammer's personal preference. 







P ~ % F * P ~ ~ ! Q ~  Sgr?rnF 

SO far you've seen examples of functions that return numbers. You can also write functions 
that return strings. For example, the following function prompts the user to enter his or her 
name, and then returns the string that the user entered. 

def get-name ( ) : 

# Get the user's name. 



6.2 Writing Your Own Value-Returning Functions 209 

name = raw-input ( 'Enter your name: ' ) 
# Return the name. 

return name 

Returning Baooleam Values 
Python allows you to write Boolean functions, which return either True  or False. You 
can use a Boolean function to test a condition, and then return either True  or F a l s e  to 
indicate whether the condition exists. Boolean functions are useful for simplifying complex 
conditions that are tested in decision and repetition structures. 

For example, suppose you are designing a program that will ask the user to enter a num- 
ber, and then determine whether that number is even or odd. The folloGing code shows 
how you can make that determination. 

number = input ( ' Enter a number : ' ) 

if (number % 2) == 0: 

print 'The number is even. ' 
else : 

print 'The number is odd. ' 

Let's take a closer look at the Boolean expression being tested by this i f - e l s e  
statement: 

(number % 2) == 0 

This expression uses the % operator, which was introduced in Chapter 2. This is called the 
remainder operator. It divides two numbers and returns the remainder of the division. So 
this code is saying, "If the remainder of number divided by 2 is equal to 0, then display a 
message indicating the number is even, or else display a message indicating the number is 
odd." 

Because dividing an even number by 2 will always give a remainder of 0, this logic will 
work. The code would be easier to understand, however, if you could somehow rewrite it 
to say, "If the number is even, then display a message indicating it is even, or else display a 
message indicating it is odd." As it turns out, this can be done with a Boolean function. In 
this example, you could write a Boolean function named i s  - even  that accepts a number 
as an argument and returns True  if the number is even, or F a l s e  otherwise. The follow- 
ing is the code for such a function. 

def is-even(number): 

# Determine whether number is even. If it is, 
# set status to true. Otherwise, set status 
# to false. 
if (number % 2) == 0: 

status = True 

else: 
status = False 

# Return the value of the status variable. 
return status 



210 Chapter 6 Value-Returning Functions and Modules 

Then you can rewrite the i f - e l s e  statement so it calls the is- even function to deter- 
mine whether number is even: 

number = input ( 'Enter a number: ' ) 

if is-even(number): 
print ' The number is even. ' 

else: 
print 'The number is odd. ' 

Not only is this logic easier to understand, but now you have a function that you can call 
in the program anytime you need to test a number to determine whether it is even. 

Using Boolean Functions in Validation Code 

You can also use Boolean functions to simplify complex input validation code. For instance, 
suppose you are writing a program that prompts the user to enter a product model num- 
ber and should only accept the values 100,200, and 300. You could design the input algo- 
rithm as follows: 

# Get the model number. 
model = input ( 'Enter the model number: ' ) 

# Validate the model number. 
while model != 1 0 0  and model != 200  and model != 300: 

print 'The valid model numbers are 100,  200  and 300.  " 
model = input ( 'Enter a valid model number : ' ) 

The validation loop uses a long compound Boolean expression that will iterate as long as 
model does not equal 100 and model does not equal 200 and model does not equal 300. 
Although this logic will work, you can simplify the validation loop by writing a Boolean 
function to test the model variable and then calling that function in the loop. For exam- 
ple, suppose you pass the model variable to a function you write named i s - i n v a l i d .  
The function returns True  if model is invalid, or F a l s e  otherwise. You could rewrite the 
validation loop as follows: 

# Validate the model number. 

while is-invalid(mode1): 
print 'The valid model numbers are 100,  200  and 3 0 0 . '  

model = input ( 'Enter a valid model number: ' ) 

This makes the loop easier to read. It is evident now that the loop iterates as long as model 
is invalid. The following code shows how you might write the i s - i n v a l i d  function. It 
accepts a model number as an argument, and if the argument is not 100 and the argument 
is not 200 and the argument is not 300, the function returns True  to indicate that it is 
invalid. Otherwise, the function returns F a l s e .  

def is-invalid(mod-num): 
if mod-num ! = 1 0 0  and mod-num ! = 200  and mod-num ! = 3 0 0  : 

status = True 

else: 
status = False 

return status 



6.3 The math Module 211 

The examples of value-returning functions that we have looked at so far return a single value. 
In Python, however, you are not limited to returning only one value. You can specify multiple 
expressions separated by commas after the r e t u r n  statement, as shown in this general format: 

return expressionl, expression2, etc. 

As an example, look at the following definition for a function named g e t  - name. The func- 
tion prompts the user to enter his or her first and last names. These names are stored in two 
local variables: f i r s t  and l a s t .  The r e t u r n  statement returns both of the variables. 

def get-name(): 

# Get the user's first and last names. 
first = raw-input( 'Enter your first name: ' ) 

last = raw-input( 'Enter your last name: ' ) 

# Return both names. 

return first, last 

When you call this function in an assignment statement, you need to use two variables on 
the left side of the = operator. Here is an example: 

first-name, last-name = get-name() 

The values listed in the r e t u r n  statement are assigned, in the order that they appear, to the 
variables on the left side of the = operator. After this statement executes, the value of the 
f i r s t  variable will be assigned to f irst- name and the value of the l a s t  variable will be 
assigned to l a s t  - name. Note that the number of variables on the left side of the = operator 
must match the number of values returned by the function. Otlzerwise an error will occur. 

r~ Checkpoint 

6.9 What is the purpose of the r e t u r n  statement in a function? 

6.10 Look at the following function definition: 

def do-something(number): 

return number * 2 

a. What is the name of the function? 

b. What does the function do? 

c. Given the function definition, what will the following statement display? 

print do-something(l0) 

6.11 What is a Boolean function? 

L CONCEPT: The Python standard library's math module contains numerous func- 
tions that can be used in mathematical calculations. 

The math module in the Python standard library contains several functions that are useful 
for performing mathematical operations. Table 6-2 lists many of the functions in the math 



~ 1 2  Chapter 6 Value-Returning Functions and Modules 

module. These functions typically accept one or more values as arguments, perform a math- 
ematical operation using the arguments, and return the result. For example, one of the func- 
tions is named s q r t .  The s q r t  function accepts an argument and returns the square root 
of the argument. Here is an example of how it is used: 

result = math.sqrt(l6) 

This statement calls the s q r t  function, passing 16 as an argument. The function returns 
the square root of 16, which is then assigned to the r e s u l t  variable. Program 6-9 demon- 
strates the s q r t  function. Notice the import  math statement in line 2. You need to write 
this in any program that uses the math module. 

Program 6-9 (square-root.py) 

# This program demonstrates the sqrt function. 
import math 

def main ( ) : 

# Get a number. 
number = input('Enter a number: ' )  

# Get the square root of the number. 
square-root = math.sqrt(number) 

# Display the square root. 
print 'The square root of', number, 'is', square-root 

# Call the main function. 

main ( ) 

Cnter a 

'he squz 
number : 

[re root 

Program Output (with input shown in bold) 

E 25 [Enter] 
1 . of 25 is 5.0 

Program 6-10 shows another example that uses the math module. This program uses the 
hypot function to calculate the length of a right triangle's hypotenuse. 

Program 6-10 (hypotenuse.py) 

1 # This program calculates the length of a right 
2 # triangle's hypotenuse. 
3 import math 

4 

5 def main(): 

6 # Get the length of the triangle's two sides. 
7 a = input('Enter the length of side A: ' )  

8 b = input('Enter the length of side B: ' ) 

9 



6.3 The math Module 213 

10 # Calculate the length of the hypotenuse. 

11 c = math.hypot(a, b) 

1 2  

13 # Display the length of the hypotenuse. 

1 if print 'The length of the hypotenuse is ' , c 
15  

15 # Call the main function. 

17 main() 

"~"l le 6-2 Many of the functions In t9e math module 

math Module Function 

a c o s  ( x ) 

a t a n ( x )  

c e i l  ( x )  

c o s  ( x )  

e x p ( x )  

f l o o r  ( x )  

h y p o t ( x ,  Y )  

l o g  ( x  ) 
log10 ( x )  

r a d i a n s  (x.) 

Description 

Returns the arc cosine of x, in radians. 

Returns the arc sine of x, in radians. 

Returns the arc tangent of x, in radians. 

Returns the smallest integer that is greater than or equal to x. 

Returns the cosine of x in radians. 

Assuming x is an angle in radians, the function returns the angle 
converted to degrees. 

Returns ex 

Returns the largest integer that is less than or equal to x. 

Returns the length of a hypotenuse that extends from (0,O) to (x,  y). 

Returns the natural logarithm of x. 

Returns the base-10 logarithm of x. 

Assuming x is an angle in degrees, the function returns the angle 
converted to radians. 

Returns the sine of x in radians. 

Returns the square root of x. 

Returns the tangent of x ill radians. 

$!2e math. pH and math, e Vaiaes 
The math module also defines two variables, p i  and e, which are assigned mathematical 
values for pi and e. You can use these variables in equations that require their values. For 
example, the following statement, which calculates the area of a circle, uses p i .  (Notice 
that we use dot notation to refer to the variable.) 

area = math-pi * radius**2 



214 Chapter 6 Value-Returning Functions and Modules 

Checkpoint 

6.12 What impor t  statement do you need to write in a program that uses the math module. 

6.13 Write a statement that uses a math module function to get the square root of 100 
and assigns it to a variable. 

6.14 Write a statement that uses a math module function to convert 45 degrees to 
radians and assigns the value to a variable. 

Storing Functiopns in Modules 

CONCEPT: A module is a file that contains Python code. Large programs are easier 
to debug and maintain when they are divided into modules. 

As your programs become larger and more complex, the need to organize your code becomes 
greater. You have already learned that a large and complex program should be divided into 
functions that each performs a specific task. As you write more and more functions in a pro- 
gram, you should consider organizing the functions by storing them in modules. 

A module is simply a file that contains Python code. When you break a program into mod- 
ules, each module should contain functions that perform related tasks. For example, sup- 
pose you are writing an accounting system. You would store all of the account receivable 
functions in their own module, all of the account payable functions in their own module, 
and all of the payroll functions in their own module. This approach, which is called 
modularixation, makes the program easier to understand, test, and maintain. 

Modules also make it easier to reuse the same code in more than one program. If you have 
written a set of functions that are needed in several different programs, you can place those 
functions in a module. Then, you can import the module in each program that needs to call 
one of the functions. 

Let's look at a simple example. Suppose your instructor has asked you to write a program 
that calculates the following: 

0 The area of a circle 
0 The circumference of a circle 
0 The area of a rectangle 
0 The perimeter of a rectangle 

There are obviously two categories of calculations required in this program: those related 
to circles, and those related to rectangles. You could write all of the circle-related func- 
tions in one module, and the rectangle-related functions in another module. Program 6-1 1 
shows the c i r c l e  module. The module contains two function definitions: a r e a  (which 
returns the area of a circle) and c i r c u m f e r e n c e  (which returns the circumference of a 
circle). 

Program 6-1 1 (circ1e.p~) 

Z # The circle module has functions that perform 
f 

2 # calculations related to circles. 



6.4 Storing Functions in Modules 215 

3 import math 

4 
5 # The area function accepts a circle's radius as an 
6 # argument and returns the area of the circle. 
7 def area(radius): 

8 return math.pi * radius**2 
9 

10 # The circumference function accepts a circle's 
I1 # radius and returns the circle's circumference. 
1 2  def circumference(radius): 

Program 6-12 shows the r e c t a n g l e  module. The module contains two function defini- 
tions: a r e a  (which returns the area of a rectangle) and p e r i m e t e r  (which returns the 
perimeter of a rectangle.) 

Program 6-1 2 (rectang1e.p~) 

# The rectangle module has functions that perform 
# calculations related to rectangles. 

# The area function accepts a rectangle's width and 
# length as arguments and returns the rectangle's area. 
def area(width, length): 

return width * length 

# The perimeter function accepts a rectangle's width 
# and length as arguments and returns the rectangle's 

# perimeter. 
def perimeter(width, length): 

return 2 * (width + length) 

Notice that both of these files contain function definitions, but they do not contain code 
that calls the functions. That will be done by the program or programs that import these 
modules. 

Before continuing, we should mention the following things about module names: 

A module's file name should end in . py. If the module's file name does not end in . py 
you will not be able to import it into other programs. 
A module's name cannot be the same as a Python key word. An error would occur, 
for example, if you named a module f o r .  

To use these modules in a program, you import them with the i m p o r t  statement. Here is 
an example of how we would import the c i rc le  module: 

import circle 



216 Chapter 6 Value-Returning Functions and Modules 

When the Python interpreter reads this statement it will look for the file c i rcle .  py in the 
same folder as the program that is trying to import it. If it finds the file it will load it into 
memory. If it does not find the file, an error  occur^.^ 

Once a module is imported you can call its functions. Assuming that r a d i u s  is a variable 
that is assigned the radius of a circle, here is an example of how we would call the a r e a  
and c i r c u m f e r e n c e  functions: 

my - area = circle.area(radius) 

my-circum = circle.circumference(radius) 

Program 6-13 shows a complete program that uses these modules. 

1 # This program allows the user to choose various 
2 # geometry calculations from a menu. This program 
3 # imports the circle and rectangle modules. 
4 

5 import circle 

6 import rectangle 

7 

8 # The main function. 

9 def main( ) : 

10 # The choice variable controls the loop 
11 # and holds the user's menu choice. 
12 choice = 0 

13 

14 while choice != 5: 

15 # display the menu. 

i 6 displaymenu() 
17 

18 # Get the user's choice. 
choice = input ( ' Enter your choice : ' ) 

# Perform the selected action. 
if choice == 1: 

radius = input("Enter the circle's radius: " )  

print 'The area is', circle.area(radius) 

elif choice == 2: 

radius = input( "Enter the circle's radius: " )  

print ' The circumference is ' , \ 
circle.circumference(radius) 

elif choice == 3: 

width = input("Enter the rectangle's width: " )  

length = input("Enter the rectangle's length: " )  

print 'The area is', rectangle.area(width, length) 

2Act~~ally the Python interpreter is set up to look in various other predefined locations in your system when it does 
not find a module in the program's folder. If you choose to learn about the advanced features of Python, you can 
learn how to specify where the interpreter looks for modules. 



6.4 Storing Functions in Modules 217 

elif choice == 4: 

width = input("Enter the rectangle's width: " )  

length = input("Enter the rectangle's length: " )  

print 'The perimeter is ' , \ 
rectangle.perimeter(width, length) 

elif choice == 5: 

print 'Exiting the program ... '  
else: 

print 'Error: invalid selection.' 

# The display-menu function displays a menu. 

def display-menu(): 

print ' MENU ' 

'print '1) Area of a circle' 

print ' 2 ) Circumference of a circle ' 
print ' 3) Area of a rectangle' 

print '4) Perimeter of a rectangle' 

print ' 5 ) Quit ' 

# Call the main function. 
main ( ) 



218 Chapter 6 Value-Returning Functions and Modules 

(continued) 

Program 6-13 is an example of a menu-driven program. A menu-driven program displays 
a list of the operations on the screen, and allows the user to select the operation that he or 
she wants the program to perform. The list of operations that is displayed on the screen is 
called a menu. When Program 6-13 is running, the user enters 1 to calculate the area of a 
circle, 2 to calculate the circumference of a circle, and so forth. 

Once the user types a menu selection, the program uses a decision structure to determine 
which menu item the user selected. An i f  - e l i f  -else statement is used in Program 6-13 
(in lines 22 through 41) to carry out the user's desired action. The entire process of display- 
ing a menu, getting the user's selection, and carrying out that selection is repeated by a w h i l e  
loop (which begins in line 14). The loop repeats until the user selects 5 (Quit) from the menu. 















i 7.1 Introduction to File Input and Output 7.3 Processing Records 
7.2 Using Loops to Process Files 7.4 Exceptions 

s CONCEPT: When a program needs to save data for later use, it writes the data in a 
file. The data can be read from the file at a later time. 

The programs you have written so far require the user to reenter data each time the pro- 
gram runs, because data that is stored in RAM (referenced by variables) disappears once 
the program stops running. If a program is to retain data between the times it runs, it must 
have a way of saving it. Data is saved in a file, which is usually stored on a computer's disk. 
Once the data is saved in a file, it will remain there after the program stops running. Data 
that is stored in a file can be retrieved and used at a later time. 

Most of the commercial software packages that you use on a day-to-day basis store data in 
files. The following are a few examples. 

* Word processors. Word processing programs are used to write letters, memos, reports, 
and other documents. The documents are then saved in files so they can be edited and 
printed. 

* Image editors. Image editing programs are used to draw graphics and edit images such a 
as the ones that you take with a digital camera. The images that you create or edit 
with an image editor are saved in files. 
Spreadsheets. Spreadsheet programs are used to work with numerical data. Numbers 
and mathematical formulas can be inserted into the rows and columns of the spread- 
sheet. The spreadsheet can then be saved in a file for use later. 
Games. Many computer games keep data stored in files. For example, some games 
keep a list of player names with their scores stored in a file. These games typically 



226 Chapter 7 Files and Exceptions 

display the players' names in order of their scores, from highest to lowest. Some 
games also allow you to save your current game status in a file so you can quit 
the game and then resume playing it later without having to start from the 
beginning. 

* Web browers. Sometimes when you visit a Web page, the browser stores a small file 
known as a cookie on your computer. Cookies typically contain information about 
the browsing session, such as the contents of a shopping cart. 

Programs that are used in daily business operations rely extensively on files. Payroll pro- 
grams keep employee data in files, inventory programs keep data about a company's prod- 
ucts in files, accounting systems keep data about a company's financial operations in files, 
and so on. 

Programmers usually refer to the process of saving data in a file as "writing data to" the 
file. When a piece of data is written to a file, it is copied from a variable in RAM to 
the file. This is illustrated in Figure 7-1. The term output file is used to describe a file 
that data is written to. It is called an output file because the program stores output 
in it. 

F ~ ~ R I ~ E  7 - 3  Writing data to a file 

Data is copied from 
RAM to the file. 

Variable 
employee-id 1745121 

Variable 
empl 0 yee-name 1 cindy  handled I I + t 

andler / 74512 / 

A file on the disk 

The process of retrieving data from a file is known as "reading data from" the file. 
When a piece of data is read from a file, it is copied from the file into RAM, and refer- 
enced by a variable. Figure 7-2 illustrates this. The term input file is used to describe a 
file that data is read from. It is called an input file because the program gets input from 
the file. 



7.1 Introduction to File Input and Output 227 

"%wrc 7-2 E3eading data from a file 

Data is copied from 
the file to RAM, and 

Variable referenced by variables. 
pay-rate 

Variable 
ernployee-id 174512k 

Variable 
employee-name pK==J7 

I 

handler / 74512 

A file on the disk 

This chapter discusses how to write data to files and read data from files. There are always 
three steps that must be taken when a file is used by a program. 

1. Open the file-Opening a file creates a connection between the file and the program. 
Opening an output file usually creates the file on the disk and allows the program to 
write data to it. Opening an input file allows the program to read data from the file. 

2. Process the file-In this step data is either written to the file (if it is an output file) or 
read from the file (if it is an input file). 

3. Close the file-When the program is finished using the file, the file must be closed. 
Closing a file disconnects the file from the program. 

Types of FIIes 
In general, there are two types of files: text and binary. A text file contains data that has been 
encoded as text, using a scheme such as ASCII or Unicode. Even if the file contains numbers, 
those numbers are stored in the file as a series of characters. As a result, the file may be opened 

. and viewed in a text editor such as Notepad. A bina y file contains data that has not been con- 
verted to text. As a consequence, you cannot view the contents of a binary file with a text editor. 

Although Python allows you to work both text files and binary files, we will work only 
with text files in this book. That way, you will be able to use an editor 8uch as Notepad to 
inspect the files that your programs create. 

Fi le Access Methsds 
Most programming languages provide two different ways to access data stored in a file: 
sequential access and direct access. When you work with a sequential access file, you access 



228 Chapter 7 Files and Exceptions 

data from the beginning of the file to the end of the file. If you want to read a piece of data 
that is stored at the very end of the file, you have to read all of the data that comes before 
it-you cannot jump directly to the desired data. This is similar to the way cassette tape 
players work. If you want to listen to the last song on a cassette tape, you have to either 
fast-forward over all of the songs that come before it or listen to them. There is no way to 
jump directly to a specific song. 

When you work with a direct access file (which is also known as a random access file), you 
can jump directly to any piece of data in the file without reading the data that comes before 
it. This is similar to the way a CD player or an MP3 player works. You can jump directly 
to any song that you want to listen to. 

In this book we will use sequential access files, Sequential access files are easy to work with, 
and you can use them to gain an understanding of basic file operations. 

Most computer users are accustomed to the fact that files are identified by a filename. For 
example, when you create a document with a word processor and then save the document 
in a file, you have to specify a filename. When you use a utility such as Windows Explorer 
to examine the contents of your disk, you see a list of filenames. Figure 7-3 shows 
how three files named c a t .  jpg, n o t e s .  t x t ,  and resume. doc  might be represented in 
Windows Explorer. 

Figwe 7-3 Three files 

Each operating system has its own rules for naming files. Many systems support the use 
of filename extensions, which are short sequences of characters that appear at the end 
of a filename preceded by a period (which is ltnown as a "dot"). For example, the files 
depicted in Figure 7-3 have the extensions . j pg ,  . t x t ,  and. doc. The extension usually 
indicates the type of data stored in the file. For example, the . j pg  extension usually 
indicates that the file contains a graphic image that is compressed according to the 
JPEG image standard. The . t x t  extension usually indicates that the file contains 
text. The .doc  extension usually indicates that the file contains a Microsoft Word 
document. 

In order for a program to work with a file on the computer's disk, the program must cre- 
ate a file object in memory. A file object is an object that is associated with a specific file, 
and provides a way for the program to work with that file. In the program, a variable ref- 
erences the file object. This variable is used to carry out any operations that are performed 
on the file. This concept is shown in Figure 7-4. 



7.1 Introduction to File Input and Output 229 

r e  - 4  A variab!e name references a file object that is associated wi th  a file 

variable-name - File object I 

A file on the disk 

You use the open function in Python to open a file. The open function creates a file object 
and associates it with a file on the disk. Here is the general format of how the open func- 
tion is used: 

file-variable = open (filename, mode) 

In the general format: 

f i l e  - v a r i a b l e  is the name of the variable that will reference the file object. 
f i l e n a m e  is a string specifying the name of the file. 

mode is a string specifying the mode (reading, writing, etc.) in which the file will be 
opened. Table 7-1 shows three of the strings that you can use to specify a mode. 
(There are other, more complex modes. The modes shown in Table 7-1 are the ones 
we will use in this book.) 

Tabie 7-1 Some of the Python file rnodes 
- --- 

Mode Description 

lrl Open a file for reading only. The file cannot be changed or written to. 

Open a file for writing. If the file already exists, erase its contents. If it 
does not exist, create it. 

Open a file to be written to. All data written to the file will be appended 
to its end. If the file does not exist, create it. 81 

For example, suppose the file cus tomers .  t x t  contains customer data, and we want to 
open for reading. Here is an example of how we would call the open function: 

customer-file = open('cusomters.txt', 'r') 



230 Chapter 7 Files and Exceptions 

After this statement executes, the file named cus tomers .  t x t  will be opened, and the 
variable cus tomer  - f i l e  will reference a file object that we can use to read data from the 
file. 

Suppose we want to create a file named s a l e s .  t x t  and write data to it. Here is an exam- 
ple of how we would call the open function: 

sales-file = open('sales.txt', 'w') 

After this statement executes, the file named s a l e s .  t x t  will be created, and the variable 
s a l e s  - f i l e  will reference a file object that we can use to write data to the file. 

contents of the existing file will be erased. 

So far in this book you have worked with several of Python's library functions, and you 
have even written your own functions. Now we will introduce you to another type of func- 
tion, which is known as a method. A method is a function that belongs to an object, and 
performs some operation using that object. Once you have opened a file, you use the file 
object's methods to perform operations on the file. 

For example, file objects have a method named w r i t e  that can be used to write data to a 
file. Here is the general format of how you call the w r i t e  method: 

In the format, f i l e  v a r i a b l e  is a variable that references a file object, and s t r i n g  is a 
string that will be written to the file. The file must be opened for writing (using the w or 
I a mode) or an error will occur. 

Let's assume that cus tomer  - f i l e  references a file object, and the file was opened for 
writing with the w mode. Here is an example of how we would write the string 'Charles 
Pace' to the file: 

customer-file.write('Charles Pace') 

The following code shows another example: 

name = 'Charles Pace' 

customer-file.write(name) 

The second statement writes the value referericed by the name variable to the file associated 
with cus tomer  - f i l e .  In this case, it would write the string 'Charles Pace' to the file. 
(These examples show a string being written to a file, but you can also write numeric values.) 

Once a program is finished working with a file, it should close the file. Closing a file discon- 
nects the program from the file. In some systems, failure to close an output file can cause a loss 
of data. This happens because the data that is written to a file is first written to a buffer, which 
is a small "holding section" in memory. When the buffer is full, the system writes the buffer's 
contents to the file. This technique increases the system's performance, because writing data to 



7.1 Introduction to File Input and Output 232 

memory is faster than writing it to a disk. The process of closing an output file forces any 
unsaved data that remains in the buffer to be written to the file. 

In Python you use the file object's c l o s e  method to close a file. For example, the follow- 
ing statement closes the file that is associated with cus tomer- f i l e :  

Program 7-1 shows a complete Python program that opens an output file, writes data to it, 
and then closes it. 

1 # This program writes three lines of data 

2 # to a file. 
3 def main( ) : 

4 # Open a file named philosophers.txt. 

5 outfile = open('philosophers.txt', 'w') 

6 
7 # Write the names of three philosphers 

8 # to the file. 
9 outfile.write('John Locke\nl) 

LO outfile.write('David Hume\ni) 

11 outfile.write('Edmund Burke\nl) 

1.2 

1.3 # Close the file. 

i 4 outfile.close() 

15 

16 # Call the main function. 

17 main() 

Line 5 opens the file p h i l o s o p h e r s .  t x t  using the w ' mode. (This causes the file to be 
created, and opens it for writing.) It also creates a file object in memory and assigns that 
object to the o u t f  i l e  variable. 

The statements in lines 9 through 11 write three strings to the file. Line 9 writes the string 
John ~ o c k e \ n  I ,  line 10 writes the string ' David Hume\n ' , and line 11 writes the 

string ' Edmund Burke\n ' . Line 3 4 closes the file. After this program runs, the three 
items shown in Figure 7-5 will be written to the p h i l o s o p h e r s .  t x t  file. 

Figure 7-5 Contents of the file p h i l o s o p h e r s .  t x t  

Beginning 
of the file 

End of 
the file 



232 Chapter 7 Files and Exceptions 

Notice that each of the strings written to the file end with \n, which you will recall is the 
newline escape sequence. The \ n  not only separates the items that are in the file, but also 
causes each of them to appear in a separate line when viewed in a text editor. For example, 
Figure 7-6 shows the philosophers. txt file as it appears in Notepad. 

FEgw-e 7-6 Contents of philosophers. txt iq Notepad 

F~le Edit Format Viett,' Help I 

If a file has been opened for reading (using the r mode) you can use the file object's read 
method to read its entire contents into memory. When you call the read method, it returns 
the file's contents as a string. For example, Program 7-2 shows how we can use the read 
method to read the contents of the philosophers. txt file that we created earlier. 

1 # This program reads and displays the contents 

2 # of the philosophers.txt file. 
3 def main( ) : 

4 # Open a file named philosophers .txt. 
5 infile = open('philosophers.txt', 'r') 

6 

7 # Read the file's contents. 
file-contents = infile.read() 

# Close the file. 
infile.close() 

# Print the data that was read into 

# memory. 
print file-contents 

# Call the main function. 
main ( ) 

Program Output 

John Lock 

D e 
E c 

wid Hun 

imund BL 



7.1 Introduction to File Input and Output 233 

The statement in line 5 opens the p h i l o s o p h e r s .  t x t  file for reading, using the I r 
mode. It also creates a file object and assigns the object to the i n f i l e  variable. Line 8 
calls the i n f  i l e .  r e a d  method to read the file's contents. The file's contents are read 
into memory as a string and assigned to the f i l e - c o n t e n t s  variable. This is shown in 
Figure 7-7. Then the statement in line 15 prints the string that is referenced by the variable. 

";quac 3-7 The f i l e  - c o n t e n t s  variable references t b  string tklat was read from the file 

file-contents -4 ~ o h n  Locke \nDavld Hume\nEdmund ~urke\n/ 

Although the r e a d  method allows you to easily read the entire contents of a file with one 
statement, many programs need to read and process the items that are stored in a file one 
at a time. For example, suppose a file contains a series of sales amounts, and you need to 
write a program that calculates the total of the amounts in the file. The program would 
read each sale amount from the file and add it to an accumulator. 

In Python you can use the r e a d l i n e  method to read a line from a file. (A line is simply a 
string of characters that are terminated with a \n.) The method returns the line as a string, 
including the \n. Program 7-3 shows how we can use the r e a d l i n e  method to read the 
contents of the p h i l o s o p h e r s .  t x t  file, one Line at a time. 

# This program reads the contents of the 
# philosophers.txt file one line at a time. 
def main ( ) : 

# Open a file named philosophers-txt. 
infile = open('philosophers.txt', 'r') 

# Read three lines from the file. 
linel = infile.readline() 
line2 = infile-readline() 
line3 = infile.readline() 

# Close the file. 
infile.close() 

# Print the data that was read into 
# memory. 
print linel 
print line2 
print line3 

# Call the main function. 

main ( ) 



234 Chapter 7 Files and Exceptions 

ivid Bun 

Ppogram Output 

J o h n  Lock 

D z 

Edmund B u r k e  

Before we examine the code, notice that a blank line is displayed after each line in the out- 
put. This is because each item that is read from the file ends with a newline character ( \n) .  
Later you will learn how to remove the newline character. 

The statement in line 5 opens the p h i l o s o p h e r s .  txt file for reading, using the ' r ' 
mode. It also creates a file object and assigns the object to the i n f  i l e  variable. When a 
file is opened for reading, a special value known as a read position is internally maintained 
for that file. A file's read position marlts the location of the next item that will be read from 
the file. Initially, the read position is set to the beginning of the file. After the statement in 
line 5 executes, the read position for the p h i l o s o p h e r s .  txt file will be positioned as 
shown in Figure 7-8. 

Flakwe 7-8 Initial read position 

Read position 

The statement in line 8 calls the i n £  i l e .  r e a d l i n e  method to read the first line from the 
file. The line, which is returned as a string, is assigned to the l i n e 1  variable. After this state- 
ment executes the l i n e 1  variable will be assigned the string ' John Locke\n ' . In addition, 
the file's read position will be advanced to the next line in the file, as shown in Figure 7-9. 

g u  - 9  %ad position advanced to the next line 

l~ohn Locke\nDavld Hume\nEdmund ~urke\n/ 

Read position 

Then the statement in line 9 reads the next line from the file and assigns it to the l i n e 2  
variable. After this statement executes the l i n e 2  variable will reference the string ' David 
Hume\n . The file's read position will be advanced to the next line in the file, as shown in 
Figure 7-10. 

FBqt~re 7-10 Read position advanced to the next line 

I 
Read position 



7.1 Introduction to File Input and Output 235 

Then the statement in line 10 reads the next line from the file and assigns it to the l i n e 3  
variable. After this statement executes the l i n e 3  variable will reference the string Edmund 
Burke\n I .  After this statement executes, the read position will be advanced to the end of 
the file, as shown in Figure 7-11. Figure 7-12 shows the l i n e l ,  l i n e 2 ,  and l i n e 3  vari- 
ables and the strings they reference after these statements have executed. 

Egguse 7-1 1 Read position advanced to the end of the file 

]john Locke\nDavid Hume\nEdmund ~urke\n( 

Read position 

Tsq~rs  7-82 The strings referenced by the l i n e l ,  l i n e 2 ,  and l i n e 3  variables 

linel p l ~ o h n  ~ocke\n] 

The statement in line 13 closes the file. The p r i n t  statements in lines 17 through 19 dis- 
play the contents of the l i n e l ,  l i n e 2 ,  and l i n e 3  variables. 

Concatenating a Newline to a String 

Program 7-1 wrote three string literals to a file, and each string literal ended with a \ n  
escape sequence. In most cases, the data items that are written to a file are not string liter- 
als, but values in memory that are referenced by variables. This would be the case in a pro- 
gram that prompts the user to enter data, and then writes that data to a file. 

When a program writes data that has been entered by the user to a file, it is usually necessary 
to concatenate a \n  escape sequence to the data before writing it. This ensures that each piece 
of data is written to a separate line in the file. Program 7-4 demonstrates how this is done. 

1 # This program gets three names from the user 
2 # and writes them to a file. 
3 

4 def main( ) : 

5 # Get three names. 
6 print 'Enter the names of three friends. ' 
7 name1 = raw-input ( ' Friend # 1 : ' ) 

(program continues) 



236 Chapter 7 Files and Exceptions 

Program 7-4 (continued) 

name2 = raw-input('Friend #2: ' )  

name3 = raw-input ( 'Friend #3 : ' ) 

# Open a file named friends .txt. 

myfile = open('friends.txtl, 'w') 

# Write the names to the file. 
myfile.write(name1 + ' \ n l )  

myfile.write(name2 + '\nl) 

myfile.write(name3 + '\n') 

# Close the file. 

myfile.close() 

print 'The names were written to friends-txt.' 

# Call the main function. 

main ( ) 

- 

inter th 

'riend # 
, .  - 1 ,  

'riend # 
'he name 

e names 

1 : Joe [ ,. - - - -  

Program Output (with input shown in bold) 

E of three friends. 

F Enter] 
Frlena V L  : Kose [Enter] 
F 3 : Geri [l.nter] 
'I s were written to friends-txt. 

Lines 7 though 9 prompt the user to enter three names, and those names are assigned to the 
variables namel, name2, and name3. Line 12 opens a file named f r i e n d s  . t x t  for writing. 
Then, lines 15 through 17 write the names entered by the user, each with \n  concatenated to 
it. As a result, each name will have the \n  escape sequence added to it when written to the file. 
Figure 7-13 shows the contents of the file with the names entered by the user in the sample run. 

F%jupe 7-1 3 The :riends.tx: file 

Sometimes complications are caused by the \n that appears at the end of the strings that 
are returned from the r e a d l i n e  method. For example, did you notice in the sample out- 
put of Program 7-3 that a blank line is printed after each line of output? This is because 
each of the strings that are printed in lines 17 through 19 end with a \ n  escape sequence. 
When the strings are printed, the \n  causes an extra blank line to appear. 

The \ n  serves a necessary purpose inside a file: it separates the items that are stored in the 
file. However, in many cases you want to remove the \ n  from a string after it is read from 



7.1 Introduction to File Input and Output 237 

a file. Each string in Python has a method named r s t r i p  that removes, or "strips," spe- 
cific characters from the end of a string. (It is named r s t r i p  because it strips characters 
from the right side of a string.) The following code shows an example of how the r s t r i p  
method can be used. 

name = 'Joanne Manchester\nl 

name = name.rstrip('\nl) 

The first statement assigns the string ' J o a n n e  Manches te r \n8  to the name variable. 
(Notice that the string ends with the \ n  escape sequence.) The second statement calls the 
name. r s t r i p  ( ' \ n  ) method. The method returns a copy of the name string without the 
trailing \n. This string is assigned back to the name variable. The result is that the trailing 
\ n  is stripped away from the name string. 

Program 7-5 is another program that reads and displays the contents of the p h i l o s o -  
p h e r s .  t x t  file. This program uses the r s t r i p  method to strip the \n  from the strings 
that are read from the file before they are displayed on the screen. As a result, the extra 
blank lines do not appear in the output. 

# This program reads the contents of the 
# philosophers.txt file one line at a time. 

def main ( ) : 
# Open a file named philosophers .txt. 

infile = open('philosophers.txt', 'r') 

# Read three lines from the file. 
linel = infile.readline() 

line2 = infile.readline() 

line3 = infile.readline() 

# Strip the \n from each string. 
linel = linel.rstrip('\nl) 

Pine2 = line2.rstrip('\n') 

line3 = line3.rstrip('\n1) 

# Close the file. 
infile.close() 

# Print the data that was read into 

# memory . 
print linel 

print line2 

print line3 

# Call the main function. 

main ( ) 



238 Chapter 7 Files and Exceptions 

Program Output 

John Loc' 

D 

E 

avid Hu 

dmund B 

When you use the w mode to open an output file and a file with the specified filename 
already exists on the disk, the existing file will be erased and a new empty file with the same 
name will be created. Sometimes you want to preserve an existing file and append new data 
to its current contents. Appending data to a file means writing new data to the end of the 
data that already exists in the file. 

In Python you can use the a I mode to open an output file in append mode, which means 
the following. 

If the file already exists, it will not be erased. If the file does not exist, it will be 
created. 

* When data is written to the file, it will be written at the end of the file's current 
contents. 

For example, assume the file f r i e n d s  . t x t  contains the following names, each in a sepa- 
rate line: 

Joe 

Rose 

Geri 

The following code opens the file and appends additional data to its existing contents. 

myfile = open('friends.txtl, 'a') 

myfile.write('Matt\nl) 

myfile.write('Chris\n') 

myfile.write('Suze\n') 

myfile.close() 

After this program runs, the file f r i e n d s  . t x t  will contain the following data: 

Joe 

Rose 

Geri 

Matt 

Chris 

Suze 

Strings can be written directly to a file with the w r i t e  method, but numbers must be con- 
verted to strings before they can be written. Python has a built-in function named s tr  that 
converts a value to a string. For example, assuming the variable num is assigned the value 
99, the expression s t r  ( num) will return the string ' 9 9 ' . 



7.1 Introduction to File Input and Output 239 

Program 7-6 shows an example of how you can use the str function to convert a number 
to a string, and write the resulting string to a file. 

# This program demonstrates how numbers 
# must be converted to strings before they 
# are written to a text file. 

def main( ) : 

# Open a file for writing. 
outfile = open('numbers.txt', 'w') 

# Get three numbers from the user. 
numl = input ( 'Enter a number: ' ) 
num2 = input ( ' Enter another number : ' ) 

num3 = input ( ' Enter another number : ' ) 

# Write the numbers to the file. 
outfile.write(str(num1) + '\nl) 

outfile.write(str(num2) + '\nl) 

outfile.write(str(num3) + '\n') 

# Close the file. 
outfile.close() 

print 'Data written to numbers.txtl 

# Call the main function. 
main ( ) 

Proaram Outnut (with input shown in bold) 

Ent 22 [Enter] 
Enter anotner numhert * A  [Enter] 
Ent rl 
Dat 

:er anot 

:a writt 

;her nur 

:en to I 

The statement in line 7 opens the file numbers. t x t  for writing. Then the statements in 
*lines 10 through 12 prompt the user to enter three numbers, which are assigned to the vari- 
ables numl, num2, and num3. 

Take a closer look at the statement in line 15, which writes the value hferenced by numl 
to the file: 

The expression str (numl ) + ' \ n  ' converts the value referenced by numl to a string 
and concatenates the \ n  escape sequence to the string. In the program's sample run, the 
user entered 22 as the first number, so this expression produces the string 22\n . As a 
result, the string ' 22 \ n '  is written to the file. 



240 Chapter 7 Files and Exceptions 

Lines 16 and 17 perform the similar operations, writing the values referenced by num2 and 
num3 to the file. After these statements execute, the values shown in Figure 7-14 will be 
written to the file. Figure 7-15 shows the file viewed in Notepad. 

F6awre is-"& Contents of the numbers. t x t  file 

w e  7-15 The numbers. t x t  file viewed in Notepad 

When you read numbers from a text file, they are always read as strings. For example, sup- 
pose a program uses the following code to read the first line from the numbers. t x t  file 
that was created by Program 7-6: 

1 infile = open('numbers.txt', 'r') 
2 value = in£ ile. readline ( ) 
3 infile.close() 

The statement in line 2 uses the r e a d l i n e  method to read a line from the file. After this 
statement executes, the v a l u e  variable will reference the string 22 \ n  I .  This can cause a 
problem if we intend to perform math with the v a l u e  variable, because you cannot perform 
math on strings. In such a case you must convert the string to a numeric type. 

Recall from Chapter 2 that Python provides the built-in function i n t  to convert a string to 
an integer, and the built-in function f l o a t  to convert a string to a floating-point number. 
For example, we could modify the code previously shown as follows: 

1 infile = open('numbers.txtl, 'r') 
2 string-input = in£ile.readline() 
3 value = int (string-input ) 
4 in£ ile .close ( ) 

The statement in line 2 reads a line from the file and assigns it to the s t r i n g  i n p u t  vari- 
able. As a result, s t r i n g- i n p u t  will reference the string 22 \n . Then th;statement in 
line 3 uses the i n t  function to convert s t r i n g- i n p u t  to an integer, and assigns the result 
to va lue .  After this statement executes, the v a l u e  variable will reference the integer 22. 
(Both the i n t  and f l o a t  functions ignore any \n  at the end of the string that is passed as 
an argument.) 



7.1 Introduction to File Input and Output 241 

This code demonstrates the steps involved in reading a string from a file with the r e a d l i n e  
method, and then converting that string to an integer with the i n t  function. In many sit- 
uations, however, the code can be simplified. A better way is to read the string from the file 
and convert it in one statement, as shown here: 

1 infile = open('numbers.txt', 'r') 
2 value = int(infile.readline()) 
3 infile.close() 

Notice in line 2 that a call to the r e a d l i n e  method is used as the argument to the i n t  
function. Here's how the code works: the r e a d l i n e  method is called, and it returns a 
string. That string is passed to the i n t  function, which converts it to an integer. The result 
is assigned to the v a l u e  variable. 

Program 7-7 shows a more complete demonstration. The contents of the numbers. t x t  
file are read, converted to integers, and added together. 

Program 7-7 (read-numbers.py) 

# This program demonstrates how numbers that are 
# read from a file must be converted from strings 
# before they are used in a math operation. 

def main( ) : 
# Open a file for reading. 
infile = open('numbers.txt', 'r') 

# Read three numbers from the file. 
numl = int(infile.readline()) 

num2 = int(infile.readline()) 
num3 = int(infile.readline()) 

# Close the file. 
infile.close() 

# Add the three numbers. 
total = numl + num2 + num3 

# Display the numbers and their total. 
print 'The numbers are: ' ,  numl, num2, num3 
print 'Their total is : ' , total 

# Call the main function. 

?rs are: 
:a1 is: 



242 Chapter 7 Files and Exceptions 

Checkpoint 

7.1 What is an output file? 

7.2 What is an input file? 

7.3 What three steps must be taken by a program when it uses a file? 

7.4 In general, what are the two types of files? What is the difference between these 
two types of files? 

7.5 What are the two types of file access? What is the difference between these two? 

7.6 When writing a program that performs an operation on a file, what two file- 
associated names do you have to work with in your code? 

7.7 If a file already exists what happens to it if you try to open it as an output file 
(using the w ' mode)? 

7.8 What is the purpose of opening a file? 

7.9 What is the purpose of closing a file? 

7.10 What is a file's read position? Initially, where is the read position when an input 
file is opened? 

7.11 In what mode do you open a file if you want to write data to it, but you do not 
want to erase the file's existing contents? When you write data to such a file, to 
what part of the file is the data written? 

" C 0 N C E PT: Files usually hold large amounts of data, and programs typically use a 
loop to process the data in a file. 

Although some programs use files to store only small amounts of data, files are typically 
used to hold large collections of data. When a program uses a file to write or read a large 
amount of data, a loop is typically involved. For example, look at the code in Program 7-8. 
This program gets sales amounts for a series of days from the user and writes those 
amounts to a file named sa les .  t x t .  The user specifies the number of days of sales data 
he or she needs to enter. In the sample run of the program, the user enters sales amounts 
for five days. Figure 7-16 shows the contents of the sales. t x t  file containing the data 
entered by the user in the sample run. 

Program 7-8 (write-sales.py) 

1 # This program prompts the user for sales amounts 
2 # and writes those amounts to the sales.txt file. 

3 

4 def main( ) : 

5 # Get the number of days. 
6 num-days = input('For how many days do ' + \ 
7 'you have sales? ' ) 

8 



7.2 Using Loops to Process Files 243 

# Open a new file named sales.txt. 
sales-file = open('sales.txtl, 'w') 

# Get the amount of sales for each day and write 
# it to the file. 
for count in range( 1, num-days + 1 ) : 

# Get the sales for a day. 
sales = input( 'Enter the sales for day 8' + \ 

str(count) + ' :  ' )  

# Write the sales amount to the file. 

sales-file.write(str(sales) + '\n') 

' #  Close the file. 
sales-file.close() 

print 'Data written to sa1es.txt.I 

# Call the main function. 
main ( ) 

r how m( 

:er the 
- r r r  t h o  

m y  day! 

sales 

:er the 

;er the 

sales 

sales 

Kiqure 7-16 Contents of the sales. txt file 

Reading a File ~ ~ 6 t h  a Loop and Detecting 
the Lwd of the File 

-Quite often a program must read the contents of a file without knowing the number 01 

items that are stored in the file. For example, the sales. t x t  file that was created by 
Program 7-8 can have any number of items stored in it, because the program asks the 
user for the number of days that he or she has sales amounts for. If t i e  user enters 5 as 
the number of days, the program gets 5 sales amounts and writes them to the file. If the 
user enters 100 as the number of days, the program gets 100 sales amounts and writes 
them to the file. 

This presents a problem if you want to write a program that processes all of the items in 
the file, however many there are. For example, suppose you need to write a program that 
reads all of the amounts in the sales. txt file and calculates their total. You can use a 



244 Chapter 7 Files and Exceptions 

loop to read the items in the file, but you need a way of knowing when the end of the file 
has been reached. 

In Python, the r e a d l i n e  method returns an empty string ( ' ' ) when it has attempted to 
read beyond the end of a file. This makes it possible to write a w h i l e  loop that determines 
when the end of a file has been reached. Here is the general algorithm, in pseudocode: 

Open the file 
Use r e a d l i n e  to  read the first line from the file 
While the value returned from r e a d l i n e  is not an  empty stri~zg: 

Process the item that was just read from the file 
Use r e a d l i n e  to  read the next line from the file. 

Close the file 

NOTE: In this algorithm we call the r e a d l i n e  method just before entering the %4 I w h i l e  loop. The purpose of this method call is to get the first line in the file, so it can 
be tested by the loop. This initial read operation is called a priming read. 

Figure 7-17 shows this algorithm in a flowchart. 

Figure 7-1 7 General logic for detecting the end of a file 

Open the file. 

I 

Use readline to read the / first line from the file. 

Yes (True) / 

I Close the file. I 



7.2 Using Loops to Process Files 245 

Program 7-9 demonstrates how this can be done in code. The program reads and displays 
all of the values in the sales. t x t  file. 

1 # This program reads all of the values in 
2 # the sales-txt file. 

3 
4 def main(): 

5 # Open the sales.txt file for reading. 
6 sales-file = open('sales.txt', 'r') 

# Read the first line from the file, but 
# don't convert to a number yet. We still 
# need to test for an empty string. 
line = sales-file.readline() 

# As long as an empty string is not returned 
# from readline, continue processing. 
while line != ": 

# Convert line to a float. 
amount = float ( line) 

# Format and display the amount. 

print '$%.2f1 % amount 

# Read the next line. 
line = sales-file-readline() 

# Close the file. 
sales-file.close() 

# Call the main function. 

main ( )  

Program Output 
$1000.00 

$2000.00 

$3000.00 

$4000.00 

$5000.00 

In the previous example you saw how the readline method returns an empty string 
when the end of the file has been reached. Most programming languages provide a 
similar technique for detecting the end of a file. If you plan to learn programming 



246 Chapter 7 Files and Exceptions 

languages other than Python, it is important for you to know how to construct this 
type of logic. 

The Python language also allows you to write a f o r  loop that automatically reads line in 
a file without testing for any special condition that signals the end of the file. The loop does 
not require a priming read operation, and it automatically stops when the end of the file 
has been reached. When you simply want to read the lines in a file, one after the other, this 
technique is simpler and more elegant than writing a w h i l e  loop that explicitly tests for 
an end of the file condition. Here is the general format of the loop: 

for variable in file-object: 

statement 

statement 

etc. 

In the general format, v a r i a b l e  is the name of a variable and f i l e - o b j e c t  is a vari- 
able that references a file object. The loop will iterate once for each line in the file. The first 
time the loop iterates, v a r i a b l e  will reference the first line in the file (as a string), the second 
time the loop iterates, v a r i a b l e  will reference the second line, and so forth. Program 7-10 
provides a demonstration. It reads and displays all of the items in the sales. t x t  file. 

# This program uses the for loop to read 

# all of the values in the sales-txt file. 

def main(): 

# Open the sales.txt file for reading. 
sales-file = open('sales.txt', 'r') 

# Read all the lines from the file. 

for line in sales-file: 

# Convert line to a float. 
amount = float ( line) 

# Format and display the amount. 
print ' $ W .2f ' % amount 

# Close the file. 
sales-file.close() 

# Call the main function. 
main ( ) 

Proaram Output 

$ 3 0 0 0 . 0 0  

0  

0  



7.2 Using Loops to Process Files 247 





Checkpoint 

7.12 Write a short program that uses a f o r  loop to write the numbers 1 through 10 to 
a file. 

7.13 What does it mean when the readline method returns an empty string? 

7.14 Assume that the file data. t x t  exists and contains several lines of text. Write a 
short program using the while loop that displays each line in the file. 

7.15 Revise the program that you wrote for Checkpoint 7.14 so to use the for  loop 
instead of the while loop. 

?j 

- C Q N C E PT: The data that is stored in a file is frequently organized in records. A record 
is a complete set of data about an item, and a field is an individual piece of 
data within a record. 



250 Chapter 7 Files and Exceptions 

When data is written to a file, it is often organized into records and fields. A record is a 
complete set of data that describes one item, and a field is a single piece of data within a 
record. For example, suppose we want to store data about employees in a file. The file will 
contain a record for each employee. Each record will be a collection of fi elds, such as name, 
ID number, and department. This is illustrated in Figure 7-18. 

"!qgr..? 7-78 Fields in a record 

Record + 
Department 

field Name I field 

'Ingrid Virgo\n' 

ID nirnber 
field 

Each time you write a record to a file, you write the complete set of fields that make up the 
record. For example, Figure 7-19 shows a file that contains three employee records. Each 
record consists of the employee's name, ID number, and department. 

4587\n1 

Figwe 7-39 Records in a file 

'Engineering\n 

Record Record Record 

I'lngrid ~irgo\n'1'4587\n'~~ngineering\n'l 'Julia Rich\n' 1'4588\n11 'Research\n' 1 '~ reg  ~oung\n'1'4589\n'l 'Marketing\ni 

Program 7-13 shows a simple example of how employee records can be written to a file. 

Program 7-1 3 (save-emp-records.py) 

# This program gets employee data from the user and 
# saves it as records in the employee-txt file. 

def main ( ) : 

# Get the number of employee records to create. 
num-emps = input ( 'How many employee records ' + \ 

' do you want to create? ' ) 

# Open a file for writing. 
emp-file = open('employees.txtl, 'w') 

# Get each employee's data and write it to 
# the file. 
for count in range( 1, num-emps + 1) : 



7.3 Processing Records 251 

# Get the data for an employee. 
print 'Enter data for employee # '  + str(count) 
name = raw input ( 'Name : ' ) - 
id-num = raw-input('1D number: ' )  

dept = raw-input('Department: ' )  

# Write the data as a record to the file. 
emp-file.write(name + '\nu) 

emp-file.write(id-num + '\nl) 

emp-file.write(dept + '\nl) 

# Display a blank line. 

print 

# Close the file. 

emp-file.close() 

print 'Employee records written to employees.txt.' 

# Call the main function. 

main ( ) 

e: Bnqai 
number : 

data fo 
m % - L  rw-. 

r emplo 

:eq 
- - 

Depdr L I L ~ ~ I I  L 

Employee r 

aata ro 

Young [B 
4,589 [E! 

yee $ 3  

loyees. 

0 
The statement in lines 6 and 7 prompts the user for the number of employee records that 
he or she wants to create. Inside the loop, in lines 17 through 19, the program gets an 
employee's name, ID number, and department. These three items, which together make an 
employee record, are written to the file in lines 22 through 24. The loop iterates once for 
each employee record. 

When we read the data from a file that contains records, we read a complete record. Program 
7-14 demonstrates how we can read the employee records in the employee. t x t  file. 



252 Chapter 7 Files and Exceptions 

# This program displays the records that are 
# in the employees.txt file. 

def main ( ) : 
# Open the employees.txt file. 
emp-file = open('employees.txtt, 'r') 

# Read the first line from the file, which is 
# the name field of the first record. 
name = emp-file.readline() 

# If a field was read, continue processing. 
while name != " : 

# Read the ID number field. 

id-num = emp-file.readline() 

# Read the department field. 
dept = emp-file.readline() 

# Strip the newlines from the fields. 
2 1 name = name.rstrip('\nt) 

2 2 id-num = id-num.rstrip('\nl) 
dept = dept.rstrip('\nl) 

# Display the record. 
print ' Name : ' , name 
print ' ID : ' , id-num 
print ' Dept : ' , dept 
print 

# Read the name field of the next record. 
name = emp-file.readline() 

# Close the file. 

emp-file.close() 

# Call the main function. 
main ( ) 

- 
Name: I 
ID: 458 

ngrid T/ 

17 

Proqram Output 

'irgo 

Dept: ~nglneering 



7.3 Processing Records 253 

Wame: Julia Rich 

ID: 4588 
Dept: Research 

Name: Greg Young 

ID: 4589 

Dept : Marketing 

This program opens the file in line 6, and then in line 10 reads the first field of the first record. 
This will be the first employee's name. The w h i l e  loop in line 13 tests the value to determine 
whether it is an empty string. If it is not, then the loop iterates. Inside the loop, the program 
reads the record's second and third fields (the employee's ID number and department), and dis- 
plays them. Then, in line 32 the first field of the next record (the next employee's name) is read. 
The loop starts over and this process continues until there are no more records to read. 

Programs that store records in a file typically require more capabilities than simply writing 
and reading records. In the following In the Spotlight sections we will examine algorithms 
for adding records to a file, searching a file for specific records, modifying a record, and 
deleting a record. 









i t ra  Mec 











262 Chapter 7 Files and Exceptions 

Checkpoint 

7.16 What is a record? What is a field? 

7.17 Describe the way that you use a temporary file in a program that modifies a 
record in a sequential access file. 

7.18 Describe the way that you use a temporary file in a program that deletes a record 
from a sequential file. 

- C 0 N C E PT: An exception is an error that occurs while a program is running, causing 
the program to abruptly halt. You can use the try/except statement to 
gracefully handle exceptions. 

An exception is an error that occurs while a program is running. In most cases, an excep- 
tion causes a program to abruptly halt. For example, look at Program 7-20. This program 
gets two numbers from the user and then divides the first number by the second number. 
In the sample running of the program, however, an exception occurred because the user 
entered 0 as the second number. (Division by O causes an exception because it is mathemat- 
ically impossible.) 

# This program divides a number by another number. 

def main ( ) : 

# Get two numbers. 
numl = input ( 'Enter a number: ' ) 
num2 = input ( 'Enter another number : ' ) , 

# Divide numl by num2 and display the result. 
result = numl / num2 
print numl, ' divided by ' , num2, ' is ' , result 

# Call the main function. 

main ( ) 

File 

mai 

number : 

iother r 
-1- I - - _ , .  

: 10 [Ent 
lumber : 

----..-A :n ( I I I U ~ L  

"C: /Pytl 

" (  

Program Output (with input shown in bold) 

I 

I I 
1 L dceudc Last) : 

7 , "  line 13, i r  Le> 

, 1 9, in 

2 :ero 

ult = n 

.sionErr 
uml / n 
.or: int 

' , L L l l C  

vision 



7.4 Exceptions 263 

The lengthy error message that is shown in the sample run is called a traceback. The traceback 
gives information regarding the line number(s) that caused the exception. (When an exception 
occws, programmers say that an exception was raised.) The last line of the error message shows 
the name of the exception that was raised ( ~ e r o ~ i v i s i o n ~ r r o r )  and a brief description of 
the error that caused the exception to be raised ( i n t e g e r  d i v i s i o n  o r  modulo by zero).  

You can prevent many exceptions from being raised by carefully coding your program. For 
example, Program 7-21 shows how division by 0 can be prevented with a simple i f  statement. 
Rather than allowing the exception to be raised, the program tests the value of num2, and dis- 
plays an error message if the value is 0. This is an example of gracefully avoiding an exception. 

1 # This program divides a number by another number. 
L 

3 def main( ) : 

4 # Get two numbers. 
5 numl = input ( 'Enter a number: ' ) 

6 num2 = input ( ' Enter another number : ' ) 
7 

8 # If num2 is not 0, divide numl by num2 

9 # and display the result. 
L 0 if num2 != 0: 

1 1 result = numl / num2 
12 print numl , 'divided by' , num2, ' is ' , result 
13 else : 

14 print 'Cannot divide by zero. ' 
15 

LS # Call the main function. 
1'7 main( ) 

Some exceptions cannot be avoided regardless of how carefully you write your program. 
For example, look at Program 7-22. This program gets the name of a file from the user and 
then displays the contents of the file. The program works as long as the user enters the 
name of an existing file. An exception will be raised, however, if the file specified by the user 
does not exist. This is what happened in the sample run. (Notice in theerror message that 
the name of the exception that occurred is IOError . )  

Program 7-22 (display-file.py) 

1 # This program displays the contents 

2 # of a file. 

(program continues) 



264 eptions 

(continued) 

def main ( ) : 
# Get the name of a file. 
filename = raw-input('Enter a filename: ' )  

# Open the file. 
infile = open(filename, 'r') 

# Read the file's contents. 
contents = infile.read() 

# Display the file's contents. 

print contents 

# Close the file. 
infile.close() 

# Call the main function. 
main ( ) 

t call 

play_£ i 

Program Output (with input shown in bold) 

Enter a filename: bad..fiie.txt [Enter] 

last) : 

le.py, " line 21, in <module> 

l ' t  

"C:/Python/display-file.py," line 9, in main 

ile = open(filename, 'r' ) 

IOError: [Errno 2 1  No such file or directory: 'bad-file.txtl 

Python, like most modern programming languages, allows you to write code that responds 
to exceptions when they are raised, and prevents the program from abruptly crashing. Such 
code is called an exception handler, and is written with the try/except statement. There 
are several ways to write a try/except statement, but the following general format 
shows the simplest variation: 

try: 

statement 

statement 

etc. 

except ExceptionName : 

statement 

statement 

etc. 

First the key word try appears, followed by a colon. Next, a code block appears which we 
will refer to as the try block. The try block is one or more statements that can potentially 
raise an exception. 



7.4 Exceptions 265 

After the try block, an except clause appears. The except clause begins with the key 
word except, optionally followed by the name of an exception, and ending with a 
colon. Beginning on the next line is a block of statements that we will refer to as a 
handler. 

When the try/except statement executes, the statements in the try block begin to exe- 
cute. The following describes what happens next: 

If a statement in the try block raises an exception that is specified by the 
ExceptionName in an except clause, then the handler that immediately follows 
the except clause executes. Then, the program resumes execution with the statement 
immediately following the try/except statement. 
If a statement in the try block raises an exception that is not specified by the 
ExceptionName in an except clause, then the program will halt with a traceback 
error message. 
If the statements in the try block execute without raising an exception, then any 
except clauses and handlers in the statement are skipped and the program resumes 
execution with the statement immediately following the try /except statement. 

Program 7-22 shows how we can write a try/except statement to gracefully respond to 
an IOError exception. 

Program 7-22 (display-file.py) 

# This program displays the contents 
# of a file. 

def main( ) : 

# Get the name of a file. 

filename = raw-input('Enter a filename: ' )  

try: 

# Open the file. 

infile = open(filename, 'r') 

# Read the file's contents. 
contents = infile.read() 

# Display the file's contents. 

print contents 

# Close the file. 
infile.close() 

except IOError : 

print 'An error occurred trying to read' 

print 'the file ' , filename 

# Call the main function. 

main ( ) 



266 Chapter 7 Files and Exceptions 

Program Output (with input shown in bold) 

Enter a filename: bad f;le.txt rr-'-"' 
r occur red t r y  

ile . txt 
ing to 

Let's look at what happened in the sample run. When line 6 executed, the user entered 
bad - file . txt, which was assigned to the filename variable. Inside the try block, line 
10 attempts to open the file bad - file . txt. Because this file does not exist, the statement 
raises an IOError exception. When this happens, the program exits the try block, skip- 
ping lines 11 through 19. Because the except clause in line 20 specifies the IOError 
exception, the program jumps to the handler that begins on line 21. Figure 7-20 illustrates 
this sequence of events. 

Figura 7-23 Seque~ce OF events in the try/except statement 

try: 
# Open the flle. 

When th~s statement b-lnflle = open (filename, 'r' ) 

raises an IOError 
exception .... + Read the file's contents. 

contents = lnflle.read0 r 
# Display the file's contents. 

... these statements print contents 
are skipped ... 

# Close the file. 
inf ile. close ( )  d except IOError: 

... and the statements print 'An error occurred trying to read' 

in this handler are print 'the file', filename 

executed. 

In many cases, the code in a try block will be capable of throwing more than one type of 
exception. In such a case, you need to write an except clause for each type of exception 
that you want to handle. For example, Program 7-23 reads the contents of a file named 
sales - data. txt. Each line in the file contains the sales amount for one month, and the 
file has several lines. Here are the contents of the file: 

Program 7-23 reads all of the numbers from the file and adds them to an accumulator variable. 



7.4 Exceptions 267 

# This program displays the total of the 
# amounts in the sales-data.txt file. 

def main(): 

# Initialize an accumulator. 
total = 0.0 

try: 
# Open the sales-data.txt file. 

infile = open('sa1es-data.txtl, 'r') 

# Read the values from the file and 
# accumulate them. 
for line in infile: 

amount = float ( line) 

total += amount 

# Close the file. 
infile.close() 

# Print the total. 
print 'Total: $%.2f1 % total 

except IOError : 

print 'An error occured trying to read the file.' 

except ValueError: 

print 'Non-numeric data found in the file. ' 

print 'An error occured. ' 

33 # Call the main function. 

The try block contains code that can raise different types of exceptions.. For example: 

* The statement in line 10 can raise an IOError exception if the sales-data. txt 
file does not exist. The for loop in line 14 can also raise an IOError exception if it 
encounters a problem reading data from the file. 
The float function in line 15 can raise a ValueError exception if the line variable 
references a string that cannot be converted to a floating-point number (an alphabetic 
string, for example). 



268 Chapter 7 Files and Exceptions 

Notice that the t r y / e x c e p t  statement has three e x c e p t  clauses: 

* The e x c e p t  clause in line 24 specifies the IOErro r  exception. Its handler in line 25 
will execute if an IOError  exception is raised. 

* The e x c e p t  clause in line 27 specifies the Va lueEr ro r  exception. Its handler in lille 
28 will execute if a Va lueEr ro r  exception is raised. 
The e x c e p t  clause in line 30 does not list a specific exception. Its handler in line 31 
will execute if an exception that is not handled by the other e x c e p t  clauses is raised. 

In this section you've seen examples of programs that can raise Z e r o D i v i s i o n ~ r r o r  
exceptions, IOError  exceptions, and Va lueEr ro r  exceptions. There are many different 
types of exceptions that can occur in a Python program. When you are designing 
t r y / e x c e p t  statements, one way you can learn about the exceptions that you need to 
handle is to consult the Python documentation. It gives detailed information about each 
~ossible exception, and the types of errors that can cause them to occur. 

Another way that you can learn about the exceptions that can occur in a program is through 
experimentation. You can run a program and deliberately perform actions that will cause 
errors. By watching the traceback error messages that are displayed you will see the names of 
the exceptions that are raised. You can then write e x c e p t  clauses to handle these exceptions. 

Checkpoint 

7.16 Briefly describe what an exception is. 

7.17 If an exception is raised and the program does not handle it with a t r y / e x c e p t  
statement, what happens? 

7.18 What type of exception does a program raise when it tries to open a non-existent file? 

7.19 What type of exception does a program raise when it uses the f l o a t  function to 
convert a non-numeric string to a number? 

a. input 
b. o u t p ~  
C .  SPf l l Ie  

. binar 

L file th 
. . 

y file 

at data i: 
('1. 

. seque 
1 .  y me 

file can 
ltted 











1 8.1 Sequences 
1 8.2 Working with Strings 

8.3 Lists 

- CONCEPT: A sequence is an object that holds multiple items of data, stored one 
after the other. You can perform operations on a sequence, to examine 
and manipulate the items stored in it. 

A sequence is an object that contains multiple items of data. The items that are in a 
sequence are stored one after the other. Python provides various ways to perform opera- 
tions on the items that are stored in a sequence. 

There are several different types of sequence objects in Python. In this chapter we will look 
at two of the fundamental sequence types: strings and lists. You've worked with strings 
already, and you know that a string is a sequence of characters. Lists are sequences that can 
hold various types of data. We will explore some of the operations that you may perform 
on these sequences, including ways to access and manipulate their contents. 

1- CONCEPT: Python provides several ways to access the individual characters in a 
string. Strings also have methods that allow you to perform operations 
on them. 

Many of the programs that you have written so far have worked with strings, but only in 
a limited way. The operations that you have performed with strings so far have primarily 
involved only input and output. For example, you have read strings as input from the key- 
board and from files, and sent strings as output to the screen and to files. 

2 73 



274 Chapter 8 Working with Sequences: Strings and Lists 

There are many types of programs that not only read strings as input and write strings 
as output, but also perform operations on strings. Word processing programs, for exam- 
ple, manipulate large amounts of text, and thus work extensively with strings. Email 
programs and search engines are other examples of programs that perform operations 
on strings. 

Python provides a wide variety of tools and programming techniques that you can use to 
examine and manipulate strings. We will look at many of these in this section. 

Some programming tasks require that j7ou access the individual characters in a string. For 
example, you are probably familiar with websites that require you to set up a password. 
For security reasons, many sites require that your password have at least one uppercase let- 
ter, at least one lowercase letter, and at least one digit. When you set up your password, a 
program examines each character to ensure that the password meets these qualifications. 
(Later in this chapter you will see an example of a program that does this sort of thing.) In 
this section we will look at two techniques that you can use in Python to access the indi- 
vidual characters in a string: using the for loop, and indexing. 

Iterating Over a String with the for Loop 

One of the easiest ways to access the individual characters in a string is to use the for loop. 
Here is the general format: 

f o r  v a r i a b l e  i n  s t r i n g :  
s t a t e m e n t  
s t a t e m e n t  
e tc .  

In the general format, v a r i a b l e  is the name of a variable and s t r i n g  is either a string 
literal or a variable that references a string. Each time the loop iterates, v a r i a b l e  will ref- 
erence a copy of a character in s t r i n g ,  beginning with the first character. We say that the 
loop iterates over the characters in the string. Here is an example: 

name = ' J u l i e t  ' 
f o r  ch i n  name:  

p r i n t  ch 

The name variable references a string with six characters, so this loop will iterate six times. 
The first time the loop iterates, the c h  variable will reference J I ,  the second time the loop 
iterates the c h  variable will reference u I ,  and so forth. This is illustrated in Figure 8-1. 
When the code executes, it will display the following: 



8.2 Working with Strings 275 

F:WW=? E-$ Iterating over the string ' J u l i e t  ' 

1 st Iteration f o r  ch i n  name: 
p r i n t  ch 

2nd iteration f o r  ch i n  name : 
p r i n t  ch 

name - 1 ' ~ u l i e t  '1 

3rd iteration f o r  ch i n  name: 
p r i n t  ch 

name ' J u l i e t '  

ch -m 

5th Iteration f o r  ch i n  name: 
p r i n t  ch 

name ' J u l i e t '  

ch 

name 

ch -m 

4th Iteration f o r  ch i n  name: 
p r i n t  ch 

name -----dl J u l i e t 1 /  

6th iteration f o r  ch i n  name: 
p r i n t  ch 

name ----tlq J u l i e t  ' 1  

NOTE: Figure 8-1 illustrates how the ch variable references a copy of a character from 
the string as the loop iterates. If we change the value that ch references in the loop, it 
has no effect on the string referenced by name. To demonstrate, look at the following: 

1 name = 'Juliet' 

2 for ch in name: 

3 ch = ' X '  

4 print name 

The statement in line 3 merely reassigns the ch variable to a different value each time 
the loop iterates. It has no effect on the string J u l i e t  that is referenced by name, 
and it has no effect on the number of times the loop iterates. When this code executes, 
the statement in line 4 will print: 

Juliet 

Program 8-1 shows another example. This program asks the user to enter a string. It then 
uses a f o r  loop to iterate over the string, counting the number of times that the letter T 
(uppercase or lowercase) appears. 



276 Chapter 8 Working with Sequences: Strings and Lists 

(cou nt-Ts. py) 

1 # This program counts the number times 
2 # the letter T (uppercase or lowercase) 
3 # appears in a string. 
4 

5 def main(): 

6 # Create a variable to use to hold the count. 
7 # The variable must start with 0 .  

8 count = 0 

9 

10 # Get a string from the user. 
my-string = raw-input('Enter a sentence: ' )  

# Count the Ts. 
for ch in my-string: 

if ch == 'TI or ch == 't' : 

count += 1 

# Print the result. 
print 'The letter T appears ' , count, 'times. ' 

# Call the main function. 
main ( ) 

Indexing 

Another way that you can access the individual characters in a string is with an index. 
Each character in a string has an index which specifies its position in the string. 
Indexing starts at 0, so the index of the first character is 0, the index of the second char- 
acter is 1, and so forth. The index of the last character in a string is 1 less than the num- 
ber of characters in the string. Figure 8-2 shows the indexes for each character in the 
string Roses are red I .  The string has 13 characters, so the character indexes range 
from 0 through 12. 

F i r w e  8-2 String indexes 

' R o s e s  a r e  r e d '  
f t t t t t f t t t t t t  
0  1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  



8.2 Working with Strings 277 

You can use an index to retrieve a copy of an individual character in a string, as shown here: 

my-string = 'Roses are red' 

ch = my_string[6] 

The expression m y s t r i n g  [ 6 1 in the second statement returns a copy of the character at 
index 6 in my- string. After this statement executes, c h  will reference a t  as shown in 
Figure 8-3. 

Here is another example: 

% - r r n r ~  a-3 Getting a c o ~ y  of a character from a string - 

my-string = 'Roses are red' 

print my-string[O], my-string[6], my-string[lO] 

mY-strlnCJ- 

This code will print the following: 

'Roses are red'  

You can also use negative numbers as indexes, to identify character positions relative to the 
end of the string. The Python interpreter adds negative indexes to the length of the string 
to determine the character position. The index - 1 identifies the last character in a string, -2 
identifies the next to last character, and so forth. The following code shows an example: 

my-string = 'Roses are red' 

print my-string[-11, my-string[-21, my-string[-131 

This code will print the following: 

IndexError Exceptions 

An I n d e x E r r o r  exception will occur if you try to use an index that is out of range for a 
particular string. For example, the string Boston ' has 6 characters, so the valid indexes 
are 0 through 5. (The valid negative indexes are -1 through -6.) The following is an 
example of code that causes an I n d e x E r r o r  exception. 

city = 'Boston' 

print city [ 6 ] 

This type of error is most likely to happen when a loop incorrectly iterates beyond the end 
of a string, as shown here: 

city = 'Boston' 

index = 0 

while index < 7: 
print city[index] 
index += 1 



278 Chapter 8 Working with Sequences: Strings and Lists 

The last time that this loop iterates, the i n d e x  variable will be assigned the value 6 ,  which 
is an invalid index for the string B o s t o n ' .  As a result, the p r i n t  statement will cause 
an I n d e x E r r o r  exception to be raised. 

The len Function 

Python has a built-in function named l e n  that returns the length of a sequence, such as a 
string. The following code demonstrates: 

city = 'Boston' 

size = len(city) 

The second statement calls the l e n  function, passing the c i t y  variable as an argument. 
The function returns the value 6, which is the length of the string ' Boston ' . This value is 
assigned to the s i z e  variable. 

The l e n  function is especially useful to prevent loops from iterating beyond the end of a 
string, as shown here: 

city = 'Boston' 

index = 0 

while index < len(city) : 
print city[index] 

index += 1 

Notice that the loop iterates as long as i n d e x  is less than the length of the string. This is 
because the index of the last character in a string is always 1 less than the length of the string. 

In Python, strings are immutable, which means that once they are created, they cannot be 
changed. Some operations, such as concatenation, give the impression that they modify 
strings, but in reality they do not. For example, look at Program 8-2. 

Program 8-2 (c0ncatenate.p~) 

# This program concatenates strings. 

def main ( ) : 

name = 'Carmen' 

print ' The name is ' , name 
name = name + ' Brown' 

print 'Now the name is', name 

# Call the main function. 
main ( ) 

Program Output 

The name is Carmen 

Now the name is Carmen Brown 



8.2 Working with Strings 279 

The statement in line 4 assigns the string ' Carmen to the name variable, as shown in 
Figure 8-4. The statement in line 6 concatenates the string ' Brown ' to the string ' Carmen 
and assigns the result to the name variable, as shown in Figure 8-5. As you can see 
from the figure, the original string ' Carmen is not modified. Instead, a new string con- 
taining 'Carmen Brown' is created and assigned to the name variable. (The original 
string, Carmen I is no longer usable because no variable references it. The Python inter- 
preter will eventually remove the unusable string from memory.) 

~ t ~ a w r e  8-4 The string 'Carmen' assigned to name 

n a m e  = ' C a r m e n '  

n a m e  -1 C a r m e n  I 

& F ~ w c ?  8-5 The string 'Carmen Brown' assigned to  name 

n a m e  = n a m e  + ' B r o w n '  

name LP C a r m e n  B r o w n  

Because strings are immutable, you cannot use an expression in the form s t r i n g [ i n d e x ]  
on the left side of an assignment operator. For example, the following code will cause an error: 

# Assign 'Bill' to friend. 

friend = 'Bill' 

# Can we change the first character to 'J'? 

friend[O] = 'J' # No, this will cause an error! 

The last statement in this code will raise an exception because it attempts to change the 
value of the first character in the string ' B i l l  ' . 

A slice is a span of items that are taken from a sequence. When you take a slice from a 
string, you get a span of characters from within the string. String slices are also called 
su bstri fzgs. 

To get a slice of a string, you write an expression in the following general format: 

stringtstart : end] 

In the general format, s t a r t  is the index of the first character in the slice, and end is the 
index marking the end of the slice. The expression will return a string containing a copy of 
the characters from s t a r t  up to (but not including) end. For example, suppose we have 
the following: 

f ull-name = ' Patty Lynn Smith ' 
middle-name = full-name[6:10] 



280 Chapter 8 Working with Sequences: Strings and Lists 

The second statement assigns the string 'Lynn to the middle  - name variable. If you leave out 
the s t a r t  index in a slicing expression, Python uses 0 as the starting index. Here is an example: 

full-name = 'Patty Lynn Smith' 

first-name = full_name[:5] 

The second statement assigns the string ' Lynn ' to f i r s t  name. If you leave out the end  
index in a slicing expression, Python uses the length of thestring as the end index. Here is 
an example: 

full-name = 'Patty Lynn Smith' 

last-name = full-name[ll:] 

The second statement assigns the string Smith  to f i r s t  - name. What do you think the 
following code will assign to the my - s t r i n g  variable? 

f ull-name = ' Patty Lynn Smith ' 
my - string = full-name[:] 

The second statement assigns the entire string ' P a t t y  Lynn Smith  ' to my - s t r i n g .  
The statement is equivalent to: 

my-string = full-name[O : len(ful1-name)] 

The slicing examples we have seen so far get slices of consecutive characters from strings. 
Slicing expressions can also have step value, which can cause characters to be skipped in 
the string. Here is an example of code that uses a slicing expression with a step value: 

letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

print letters[0:26:2] 

The third number inside the brackets is the step value. A step value of 2, as used in this 
example, causes the slice to contain every second character from the specified range in the 
string. The code will print the following: 

ACEGIKMOQSUWY 

You can also use negative numbers as indexes in slicing expressions to reference positions 
relative to the end of the string. Here is an example: 

f ull-name = ' Patty Lynn Smith ' 
last-name = full-name[-5:] 

Recall that Python adds a negative index to the length of a string to get the position refer- 
enced by that index. The second statement in this code assigns the string ' Smith ' to the 
l a s t  - name variable. 

* If the end  index specifies a position beyond the end of the string, Python will use 
the length of the string instead. 
If the s t a r t  index specifies a position before the beginning of the string, Python 
will use 0 instead. 

* If the s t a r t  index is greater than the end  index, the slicing expression will return 



8.2 Working with Strings 281 





2.L Y U U L  

3r your 

3r your 
r c x , e + a r  

;ad899 

gram 81 
.- -7- . - -  

r syster 

.Is497 , 

last n, 

studenl 
n 1*m;m 

n login 

vith inpu 

name ir 

ddia [Em 
nber: C: 

in bold) 

t~ YVUL first name: JO [Enter] 
er your last name: Cusimano [ 
er your student ID number: B!w-w~Jc~ gmxer-r: 

In Python you can use the i n  operator to determine whether one string is contained in 
another string. Here is the general format of an expression using the i n  operator with two 
strings: 

s t r i n g l  in s t r i n g 2  

s t r i n g l  and s t r i n g 2  can be either string literals or variables referencing strings. The 
expression returns true if s t r i n g 1  is found in s t r i n q 2 .  For example, look at the follow- 
ing code: 

text = 'Four score and seven years ago' 

if 'seven' in text: 

print 'The string "seven" was found.' 

else : 

print 'The string "seven" was not found.' 

This code determines whether the string ' Four  s c o r e  and seven  y e a r s  ago ' con- 
tains the string ' seven  ' .  If we run this code it will display: 

The string "seven" was found. 

You can use the n o t  i n  operator to determine whether one string is not contained in another 
string. Here is an example: 

names = 'Bill Joanne Susan Chris Juan Katie' 

if 'Pierre' not in names: 

print 'Pierre was not found. ' 

else : 
print 'Pierre was found. ' 

If we run this code it will display: 

Pierre was not found. 



284 Chapter 8 Working with Sequences: Strings and Lists 

Recall from Chapter 7 that a method is a function that belongs to an object, and per- 
forms some operation on that object. Strings in Python have numerous meth0ds.l In this 
section we will discuss several string methods for performing the following types of 
operations: 

Testing the values of strings 
Performing various modifications 
Searching for substrings and replacing sequences of characters 

Here is the general format of a string method call: 

In the general format, s t r i n g v a r  is a variable that references a string, m e t h o d  is the 
name of the method that is being called, and a r g u m e n t s  is one or more arguments being 
passed to the method. Let's look at some examples. 

String Testing Methods 

The string methods shown in Table 8-1 test a string for specific characteristics. For exam- 
ple, the isdigit method returns true if the string contains only numeric digits. Otherwise, 
it returns false. Here is an example: 

stringl = ' 1200' 
if stringl.isdigit(): 

print stringl, 'contains only digits.' 
else : 

print stringl, 'contains characters other than digits.' 

This code will display 

1200 contains only digits. 

Here is another example: 

string2 = ' 123abc ' 
if string2.isdigitO: 

print string2, 'contains only digits.' 
else: 

print string2, 'contains characters other than digits.' 

This code will display 

123abc contains characters other 'than digits. 

Program 8-5 demonstrates several of the string testing methods. It asks the user to enter a 
string, and then displays various messages about the string, depending on the return value 
of the methods. 

1 We do not cover all of the string methods in this book. For a comprehensive list of string methods, see the Python 
documentation at www.python.org. 



8.2 Working with Strings 285 

T P - Some string testinq methods 

Method Description 

isalnum( ) Returns true if the string contains only alphabetic letters or digits and is at least 
one character in length. Returns false otherwise. 

isalpha( ) Returns true if the string contains only alphabetic letters, and is at least one 
character in length. Returns false otherwise. 

isdigit ( ) Returns true if the string contains only numeric digits and is at least one character 
in length. Returns false otherwise. 

islower ( ) Returns true if all of the alphabetic letters in the string are lowercase, and the 
string contains at least one alphabetic letter. Returns false otherwise. 

isspace ( ) Returns true if the string contains only whitespace characters, and is at least one 
character in length. Returns false otherwise. (Whitespace characters are spaces, 
newlines ( \n) ,  and tabs (\t). 

isupper( ) Returns true if all of the alphabetic letters in the string are uppercase, and the 
string contains at least one alphabetic letter. Returns false otherwise. 

Program 8-5 (string-test.py) 

# This program demonstrates several string testing methods. 

def main( ) : 

# Get a string from the user. 
user - string = raw-input('Enter a string: ' )  

print 'This is what I found about that string: ' 

# Test the string. 
if user-string.isalnum(): 

print 'The string is alphanumeric.' 
if user-string.isdigit(): 

print 'The string contains only digits.' 
if user-string.isalpha(): 

print 'The string contains only alphabetic characters.' 
if user-string.isspace(): 

print 'The string contains only whitespace characters.' 
if user-string.islower(): 

print 'The letters in the string are all lowercase. ' 
if user-string.isupper(): 

print 'The letters in the string are all uppercase. ' 

# Call the string. 

main ( ) 



286 Chapter 8 Working with Sequences: Strings and Lists 

Modification Methods 

Although strings are immutable, meaning they cannot be modified, they do have a number of 
methods that return modified versions of themselves. Table 8-2 lists several of these methods. 

"P%@? %-2 String Modification Methods 

Method Description 

lower ( ) 

Istrip( ) 

rstrip(char) 

strip ( ) 

strip(char) 

upper ( 

Returns a copy of the string with all alphabetic letters converted to lowercase. Any 
character that is already lowercase, or is not an alphabetic letter, is unchanged. 

Returns a copy of the string with all leading whitespace characters removed. 
Leading whitespace characters are spaces, newlines ( \n ) ,  and tabs (\t) that 
appear at the beginning of the string. 

The char argument is a string containing a character. Returns a copy of the string 
with all instances of char that appear at the beginning of the string removed. 

Returns a copy of the string with all trailing whitespace characters removed. 
Trailing whitespace characters are spaces, newlines ( \n ) ,  and tabs (\t) that 
appear at the end of the string. 

The char argument is a string containing a character. The method returns a copy of 
the string with all instances of char. that appear at the end of the string removed. 

Returns a copy of the string with all leading and trailing whitespace characters 
removed. 

Returns a copy of the string with all instances of char that appear at the 
beginning and the end of the string removed. 

Returns a copy of the string with all alphabetic letters converted to uppercase. Any 
character that is already uppercase, or is not an alphabetic letter, is unchanged. 



8.2 Working with Strings 287 

For example, the lower method returns a copy of a string with all of its alphabetic letters 
converted to lowercase. Here is an example: 

letters = 'WXYZ ' 
print letters, letters.lower() 

This code will print: 

WXYZ wxyz 

The upper method returns a copy of a string with all of its alphabetic letters converted to 
uppercase. Here is an example: 

letters = ' abcd' 
print letters, letters.upper() 

This 'code will print: 

abed ABCD 

The lower and upper methods are useful for making case-insensitive string compar- 
isons. String comparisons are case-sensitive, which means that the uppercase characters 
are distinguished from the lowercase characters. For example, in a case-sensitive corn- 
parison, the string ' a b c  ' is not considered the same as the string 'ABC ' or the string 

~ b c  because the case of the characters are different. Sometimes it is more convenient 
to perform a case-insensitive comparison, in which the case of the characters is ignored. 
In a case-insensitive comparison, the string ' a b c  ' is considered the same as ' ABC ' and 
'Abc ' . 
For example, look at the following code: 

again = ' y' 

while again. lower ( ) == ' y ' : 
print 'Hello' 

print 'Do you want to see that again?' 

again = raw-input( ' y =. yes, anything else = no: ' ) 

Notice that the last statement in the loop asks the user to enter y to see the message dis- 
played again. The loop iterates as long as the expression a g a i n .  lower ( ) == ' y ' is true. 
The expression will be true if the a g a i n  variable references either y or Y . 
Similar results can be achieved by using the upper method, as shown here: 

again = ' y' 

while again-upper ( ) == ' Y ' : 

print 'Hello' 

print 'Do you want to see that again?' L 

again = raw-input( ' y = yes, anything else = no: ' ) 

Searching and Replacing 

Programs commonly need to search for substrings, or strings that appear within other 
strings. For example, suppose you have a document opened in your word processor, and 
you need to search for a word that appears somewhere in it. The word that you are search- 
ing for is a substring that appears inside a larger string, the document. 



288 Chapter 8 Working with Sequences: Strings and Lists 

Table 8-3 lists some of the Python string methods that search for substrings, as well as a 
method that replaces the occurrences of a substring with another string. 

-P ,ab% 8-3 Search and replace methods 

Method Description 

endswith (substring) The substring argument is a string. The method returns true if 
the string ends with substring. 

find(substring) The substring argument is a string. The method returns the 
lowest index in the string where substring is found. If 
substring is not found, the method returns -1. 

replace(old, new) The old and new arguments are both strings. The method returns 
a copy of the string with all instances of old replaced by new. 

startswith (substring) The substring argument is a string. The method returns true if 
the string starts with substring. 

The endswi th  method determines whether a string ends with a specified substring. Here 
is an example: 

filename = raw-input('Enter the filename: ' )  

if filename.endswith('.txt'): 

print 'That is the name of a text file. ' 
elif filename.endswith('.py'): 

print 'That is the name of a Python source file. ' 

elif filename.endswith('.doc'): 

print 'That is the name of a word processing document 

else : 

print 'Unknown file type. ' 

The s t a r t s w i t h  method works like the e n d s w i t h  method, but determines whether a 
string begins with a specified substring. 

The f i n d  method searches for a specified substring within a string. The method returns the 
lowest index of the substring, if it is found. If the substring is not found, the method returns 
- 1. Here is an example: 

string = 'Four score and seven years ago' 

position = string.find('sevenl) 

if position != -1: 

print 'The word "seven" was found at index', position 

else : 

print 'The word "seven" was not found. ' 

This code will display: 

The word "seven" was found at index 15 



8.2 Working with Strings 289 

The replace method returns a copy of a string, where every occurrence of a specified sub- 
string has been replaced with another string. For example, look at the following code: 

string = 'Four score and seven years ago' 

new-string = string.replace('yearsl, 'days') 

print new-string 

This code will display: 

Four score and seven days ago 







You learned in Chapter 2 that the " symbol multiplies two numbers. However, when the 
operand on the left side of the '' symbol is a string and the operand on the right side is an 
integer, it becomes the repetition operator. Here is the general format: 

string-to-copy * n 

The repetition operator creates a string that contains n  repeated copies of s t r ing  - t o  - copy. 
Mere is an example: 

my-string = 'w' * 5 

After this statement executes, my - s t r i n g  will reference the string 'wwwww'. Here is 
another example: 

print 'Hello' * 5 

This statement will print: 

Program 8-8 demonstrates the repetition operator. 

I # This program demonstrates the repetition operator. 
2 

3 def main( ) : 

4 # Print 9 rows increasing in length. 

5 for count in range(1, 10): 

6 print ' 2 '  * count 



8.2 Working with Strings 293 

7 

8 # Print 9 rows decreasing in length. 
9 for count in range(8, 0, -1): 

10 print 'Z' * count 
1 I 
12 # Call the main function. 

13 main() 

Checkpoint 

8.1 Assume the variable name references a string. Write a f o r  loop that prints each 
character in the string. 

8.2 What is the index of the first character in a string? 

8.3 If a string has 10 characters, what is the index of the last character? 

8.4 What happens if you try to use an invalid index to access a character in a string? 

8.5 How do you find the length of a string? 

8.6 What is wrong with the following code? 

animal = ' Tiger ' 
animal[O] = 'L' 

8.7 What will the following code display? 

mystring = 'abcdefg' 
print mystring[2:5] 

8.8 What will the following code display? 

mystring = ' abcdef g ' 
print mystring[3:] 



294 Chapter 8 Working with Sequences: Strings and Lists 

8.9 What will the following code display? 

mystring = ' abcdef g ' 
print mystring[:3] 

8.10 What will the following code display? 

mystring = 'abcdefg' 

print mystring[:] 

8.11 Write code using the i n  operator that determines whether ' d' is in mys t r ing .  

8.12 Assume the variable b i g  references a string. Write a statement that converts the 
string it references to lowercase, and assigns the converted string to the variable 
l i t t l e .  

8.13 Write an i f  statement that displays "Digit" if the string referenced by the variable 
c h  contains a numeric digit. Otherwise, it should display "No digit." 

8.14 What is the output of the following code? 

ch = 'a' 

ch2 = ch.upper() 

print ch, ch2 

8.15 Write a loop that asks the user "Do you want to repeat the program or quit? 
(RJQ)". The loop should repeat until the user has entered an R or Q (either 
uppercase or lowercase). 

8.16 What will the following code display? 

var = ' $ '  

print var.upper() 

8.17 Write a loop that counts the number of uppercase characters that appear in the 
string referenced by the variable mys t r ing .  

i CONCEPT: A list is an object that contains multiple data items. Lists are mutable, 
which means that their contents can be changed during a program's 
execution. Lists are dynamic data structures, meaning that items may be 
added to them or removed from them. You can use indexing, slicing, and 
various methods to work with lists in a program. 

A list is an object that contains multiple data items. Each item that is stored in a list is called 
an element. Here is a statement that creates a list of integers: 

even-numbers = [2, 4, 6 ,  8, 1 0 1  

The items that are enclosed in brackets and separated by commas are the list elements. After 
this statement executes, the variable even-numbers will reference the list, as shown in 
Figure 8-6. 



8.3 Lists 295 

K P P ~ ~ ~ F c ?  T-6 A Aist of integers 

The following is another example: 

even-numbers - 
names = ['Molly', 'Steven', 'Will', 'Alicia', 'Adriana'] 

This statement creates a list of five strings. After the statement executes, the name variable 
will reference the list as shown in Figure 8-7. 

2 

-. s ~ m ~ . v = e  8-7 A list of strings 

4 

You can use the p r i n t  statement to display an entire list, as shown here: 

names - 
numbers = [5, 10, 15, 201 

print numbers 

When the p r i n t  statement executes, it will display the elements of the list like this: 

[5, 10, 15, 201 

6 

You can use the r a n g e  function, which was introduced in Chapter 5, to generate a list of 
integers. Here is an example: 

Molly 

numbers = range(5) 

8 

In this statement the r a n g e  function will return a list of integers in the range of 0 up 
to (but not including) 5. This statement will assign the list 0, 1, 2 ,  3, 4 1 to the 
numbers variable. Here is another example: 

10 

Steven 

numbers = range(1, 10, 2) 

Recall from Chapter 5 that when you pass three arguments to the r a n g e  function, the first 
argument is the list's starting value, the second argument js the list's ending limit, and the 
third argument is the step value. This statement will assign the list [ 1, 3 ,  5 ,  7 ,  9 1 to 
the numbers variable. 

Will 

You can use the repetition operator ( " )  to easily create a list with a specific number of 
elements, each with the same value. Here is an example: 

numbers = [O ] * 5 

Alicia 

This statement will create a list with five elements, with each element holding the value 0. 
This statement will assign the list [ 0, 0, 0, 0, 0 1 to the numbers variable. 

Adriana 



296 Chapter 8 Working with Sequences: Strings and Lists 

In Section 8.1 we discussed techniques for accessing the individual characters in a string. 
Many of the same programming techniques also apply to lists. For example, you can iter- 
ate over a list with the f o r  loop, as shown here: 

numbers = 199, 100, 101, 1021 

for n in numbers: 

print n 

If we run this code, it will print: 

Indexing works with lists just as it does with strings. Each element in a list has an index 
which specifies its position in the list. Indexing starts at 0, so the index of the first element 
is 0, the index of the second element is 1, and so forth. The index of the last element in a 
list is 1 less than the number of elements in the list. 

For example, the following statement creates a list with 4 elements: 

my-list = [lo, 20, 30, 401 

The indexes of the elements in this list are 0, 1, 2, and 3. We can print the elements of the 
list with the following statement: 

print my-list[O], my-list[l], my-list[2], my_list[3] 

The following loop also prints the elements of the list: 

index = 0 

while index < 4: 
print my-list[index] 

index += 1 
You can also use negative indexes with lists, to identify element positions relative to the end 
of the list. The Python interpreter adds negative indexes to the length of the list to deter- 
mine the element position. The index -1 identifies the last element in a list, -2 identifies 
the next to last element, and so forth. The following code shows an example: 

my-list = [lo, 20, 30, 401 

print my-list[-11, my-list[-21, my-list[-31, my-list[-41 

This p r i n t  statement will display: 

An I n d e x E r r o r  exception will be raised if you use an invalid index with a list. For exam- 
ple, look at the following code: 

# This code will cause an IndexError exception. 
my-list = [lo, 20, 30, 401 



8.3 Lists 297 

index = 0 

while index < 5: 

print my-list[index] 

index += 1 

The last time that this loop iterates, the i n d e x  variable will be assigned the value 5,  which 
is an invalid index for the list. As a result, the p r i n t  statement will cause an I n d e x E r r o r  
exception to be raised. 

The l e n  function that you learned about in the previous section can be used with lists as 
well as strings. When you pass a list as an argument, the l e n  function returns the number 
of elements in the list. The previously shown code, which raises an I n d e x E r r o r  excep- 
tion, can be modified as follows to prevent the exception: 

myLlist = [ l o ,  20, 30, 401 
index = 0 

while index < len(my-list) : 
print my-list[index] 

index += 1 

Slicing operations work with lists just as they do with strings. For example, suppose we 
create the following list: 

days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 

'Thursday', 'Friday', 'Saturday'] 

The following statement uses a slicing expression to get the elements from indexes 2 up to, 
but not including, 5: 

mid-days = days[2:5] 

After this statement executes the mid - days variable will reference the following list: 

['Tuesday', 'Wednesday', 'Thursday']. 

FfndQmg 18ems in a bfs* with in and not in 

You can use the i n  operator to determine whether an item is contained in a list. Program 8-9 
shows an example. 

Program 8-9 (in-list.py) 

I # This program demonstrates the in operator 

2 # used with a list. 
3 

4 def main( ) : 

5 # Create a list of product numbers. 
6 prod-nums = ['V475', 'F987', 'Q143', 'R688'1 

(program continues) 



298 Chapter 8 Working with Sequences: Strings and Lists 

Program 8-9 (continued) 

# Get a product number to search for. 
search = raw-input('Enter a product number: ' )  

# Determine whether the product number is in the list. 

if search in prod-nums: 
print search, 'was found in the list.' 

else: 
print search, 'was not found in the list. ' 

# Call the main function. 

main ( ) 

1s found 

n Butpt 

The program gets a product number from the user in line 9 and assigns it to the s e a r c h  
variable. The i f  statement in line 12 determines whether s e a r c h  is in the prod-nums list. 

You can use the n o t  i n  operator to determine whether an item is not in a list. Here is an 
example: 

if search not in prod-nums: 

print search, 'was not found in the list.' 

else: 

print search, 'was found in the list. ' 

Unlike strings, lists in Python are mutable, which means their elements can be changed. 
Consequently, an expression in the form list [ index]  can appear on the left side of an 
assignment operator. The following code shows an example: 

1 numbers = [l, 2 ,  3 ,  4 ,  51 
2 p r i n t  numbers 
3 numbers[O] = 99 
4 p r i n t  numbers 

The statement in line 2 will display: 

The statement in line 3 assigns 99 to numbers [ 0 1.  This changes the first value in the list 
to 99. When the statement in line 4 executes it will display: 



8.3 Lists 299 

When you use an indexing expression to assign a value to a list element, you must use a 
valid index for an existing element, or an I n d e x E r r o r  exception will occur. For example, 
look at the following code: 

numbers = [ I ,  2, 3 ,  4, 51  # Create a list with 5 elements. 
numbers [5] = 99 # This raises an exception! 

The numbers list that is created in the first statement has five elements, with the indexes 
0 through 4. The second statement will raise an I n d e x E r r o r  exception because the 
numbers list has no element at index 5. 

If you want to use indexing expressions to fill a list with values, you have to create the list 
first, as shown here: 

1 , # Create a list with 5 elements. 
2 numbers = [O] * 5 
3 
4 # Fill the list with the value 99. 
5 index = 0 

6 while index < len(numbers): 
7 numbers[index] = 99 

8 index += 1 

The statement in line 2 creates a list with five elements, each element assigned the value 0. 
The loop in lines 6 through 8 then steps through the list elements, assigning 99 to each one. 

Program 8-10 shows an example of how user input can be assigned to the elements of a list. 
This program gets sales amounts from the user and assigns them to a list. 

Program 8-10 (sales-list.py) 

1 # The NUM-DAYS constant holds the number of 
2 # days that we will gather sales data for. 

NUM-DAYS = 5 

def main( ) : 
# Create a list to hold the sales 

# for each day. 
sales = [O] * NUM DAYS - 

# Create a variable to hold an index. 
index = 0 

print 'Enter the sales for each day. ' 

# Get the sales for each day. 
while index < NUM-DAYS: 

sales[index] = input('Day # '  + str(index+l) + ' :  ' )  

index += 1 

(program continues) 



300 Chapter 8 Working with Sequences: Strings and Lists 

(continued) 

2 0 # Display the values entered. 

2 1 print 'Here are the values you entered: ' 

2 2 for value in sales: 

2 3 print value 

2 4 

25 # Call the main function. 

26 main() 

The statement in line 3 creates the variable NUM-DAYS, which is used as a constant for 
the number of days. The statement in line 8 creates a list with five elements, with each 
element assigned the value 0. Line 11 creates a variable named i n d e x  and assigns the 
value 0 to it. 

The loop in lines 16 through 18 iterates 5 times. The first time it iterates, i n d e x  will ref- 
erence the value 0, so the statement in line 17 assigns,the user's input to s a l e s  [ 0 ] .  The 
second time the loop iterates, i n d e x  will reference the value 1, so the statement in line 17 
assigns the user's input to s a l e s  [ 1 1. This continues until input values have been assigned 
to all of the elements in the list. 

Lists have numerous methods that allow you to add elements, remove elements, change the 
ordering of elements, and so forth. We will look at a few of these methods: which are listed 
in Table 8-4. 

The append Method 

The append method is commonly used to add items to a list. The item that is passed as an 
argument is appended to the end of the list's existing elements. Program 8-11 shows an 
example, 

We do not cover all of the list methods in this book. For a description of all of the list methods, see the Python 
documentatioll at www.python.org. 



8.3 Lists 301 

-=-pb!e 8-a A few of t+e list methods 

Method Description 

append ( it em ) Adds item to the end of the list. 

Returns the index of the first element whose value is equal to item. 
A ValueError exception is raised if item is not found in the list. 

insert (index, item) Inserts item into the list at the specified index. Wben an item is 
inserted into a list, the list is expanded in size to accommodate the 
new item. The item that was previously at the specified index, and all 
the items after it, are shifted by one position toward the end of the list. 
No exceptions will occur if you specify an invalid index. If you 
specify an index beyond the end of the list, the item will be added to 
the end of the list. If you use a negative index that specifies an 
invalid position, the item will be inserted at the beginning of the list. 

sort ( ) Sorts the items in the list so they appear in ascending order (from 
the lowest value to the highest value). 

remove(item) Removes the first occurrence of item from the list. A ValueError 
exception is raised if item is not found in the list. 

reverse ( ) Reverses the order of the items in the list. 

# This program demonstrates how the append 
# method can be used to add items to a list. 

def main ( ) : 

# First, create an empty list. 
name-list = [ I  

# Create a variable to control the loop. 
again = 'Y' 

# Add some names to the list. 
while again.upper() == 'Y': 

# Get a name from the user. 
name = raw-input ( ' Enter a name: ' ) 

# Append the name to the list. 
name-list.append(name) 

# Add another one? 
print 'Do you want to add another name?' 

again = raw-input( 'Y = yes, anything else = no: ' ) 
print 

2 3 (program continues) 



302 Chapter 8 Working with Sequences: Strings and Lists 

(continued) 

2 4 # Display the names that were entered. 
2 5 print 'Here are the names you entered.' 

2 6 

2 7 for name in name-list: 

2 8 print name 

29 
30 # Call the main function. 
31 main() 

, - - yes, 

:nter a 

10 you P 
7 = yes I 

Cathryn 

name: < 
.-...+ + r r  

anythj 

name: 6 
rant to 

anythj 

. . - . . - . 

 ant to 

, anythj 

add an( 

Lng else 

add anc 

ing else 

Notice the statement in line 6: 

name-list = [ I  

This statement creates an empty list (a list with no elements) and assigns it to the 
name l i s t  variable. Inside the loop, the append method is called to build the list. The 
first time the method is called, the argument passed to it will become element 0. The sec- 
ond time the method is called, the argument passed to it will become element 1. This con- 
tinues until the user exits the loop. 

The index Method 

Earlier you saw how the i n  operator can be used to determine whether an item is in a list. 
Sometimes you need to know not only whether an item is in a list, but where it is located. 
The i n d e x  method is useful in these cases. You pass an argument to the i n d e x  method 
and it returns the index of the first element in the list containing that item. If the item is not 
found in the list, the method raises a Va lueEr ro r  exception. Program 5-12 demonstrates 
the i n d e x  method. 



8.3 Lists 303 

1 # This program demonstrates how to get the 
2 # index of an item in a list and then replace 

# that item with a new item. 

def main(): 
# Create a list with some items. 
food = ['Pizza', 'Burgers', 'Chips'] 

# Display the list. 
print ' Here are the items in the food list: ' 
print food 

# Get the item to change. 

14 item = raw-input('Which item should I change? ' )  

i 5 

16 try: 
1 7 # Get the item's index in the list. 

L 8 item-index = food.index(item) 
1.9 

2 0 # Get the value to replace it with. 
2 1 new-item = rawwinput( 'Enter the new value: ' ) 
2 2 

2 3 # Replace the old item with the new item. 
24 food[item-index] = new-item 
2 5 

2 6 # Display the list. 
27 print 'Here is the revised list:' 
2 8 print food 
2 9 except ValueError: 

3 0 print 'That item was not found in the list. ' 
3 1 
32 # Call the main function. 
33 main() 

The elements of the food  list are displayed in line 11, and in line 14 the user is asked which 
item he or she wants to change. Line 18 calls the i n d e x  method to get the index of the 



304 Chapter 8 Working with Sequences: Strings and Lists 

item. Line 21 gets the new value from the user, and line 24 assigns the new value to the ele- 
ment holding the old value. 

The insert Method 

The i n s e r t  method allows you to insert an item into a list at a specific position. You pass 
two arguments to the i n s e r t  method: an index specifying where the item should be 
inserted and the item that you want to insert. Program 8-13 shows an example. 

# This program demonstrates the insert method. 

def main ( ) : 

# Create a list with some names. 
names = ['James', 'Kathryn', 'Bill'] 

# Display the list. 
print 'The list before the insert: ' 

print names 

# Insert a new name at element 0. 
names.insert(0, 'Joe') 

# Display the list again. 
print 'The list after the insert: ' 

print names 

# Call the main function. 
main ( ) 

tef ore 

' Kath~ 

Program Output 

Ti t the insert: 

[ ?ynl, 'Bill'] 
The list after the insert: 

['Joe', 'James', 'Kathryn', 'Bill'] 

The sort Method 

The s o r t  method rearranges the elements of a list so they appear in ascending order (from 
the lowest value to the highest value). Here is an example: 

my-list= [ 9 ,  1, 0, 2, 8, 6, 7 ,  4, 5, 31 

print 'Original order:', my-list 

my-list.sort() 

print 'Sorted order:', my-list 



8.3 Lists 305 

When this code runs it will display the following: 

Original order: [ 9 ,  1, 0, 2, 8, 6, 7, 4, 5, 31 
Sorted order: [O, 1, 2, 3, 4, 5, 6, 7, 8, 93 

Here is another example: 

my-list = ['beta', 'alpha', 'delta', 'gamma'] 
print 'Original order:', my-list 
my-list.sort() 

print 'Sorted order:', my-list 

When this code runs it will display the following: 

Original order: ['beta', 'alpha', 'delta', 'gamma'] 

Sorted order: ['alpha', 'beta', 'delta', 'gamma'] 

The remove Method 

The remove method removes an item from the list. You pass an item to the method as an 
argument and the first element containing that item is removed. This reduces the size of the 
list by one element. All of the elements after the removed element are shifted one position 
toward the beginning of the list. A ValueError exception is raised if the item is not found 
in the list. Program 8-14 demonstrates the method. 

Program 8-14 (remove-item .py) 

1 # This program demonstrates how to use the remove 
, 2 # method to remove an item from a list. 

3 

4 def 
5 

6 

7 

8 

9 

10 

11 

12 

13 

main ( ) : 
# Create a list with some items. 
food = ['Pizza', 'Burgers', 'Chips'] 

# Display the list. 
print 'Here are the items in the food list: ' 
print food 

# Get the item to change. 
item = raw-input( 'Which item should I remove? ' ) 

try: 
# Remove the item. 
food.remove(item) 

# Display the list. 
print ' Here is the revised list: ' 

print food 

except ValueError: 

(program continues) 



306 Chapter 8 Working with Sequences: Strings and Lists 

Program 8-14 (continued) 

2 4 print ' That item was not found in the list. ' 
2 5 

26 # Call the main function. 

27 main() 

The reverse Method 

The r e v e r s e  method simply reverses the order of the items in the list. Here is an example: 

my-list = [ I ,  2 ,  3 ,  4 ,  5 1  

print 'Original order:', my-list 

my-list.reverse() 

print 'Reversed:', my-list 

This code will display the following: 

Original order: [ l ,  2 ,  3, 4 ,  5 1  

Reversed: [ 5 ,  4 ,  3, 2 ,  1 1  

The del Statement 

The remove method that you saw earlier removes a specific item from a list, if that item is 
in the list. Some situations might require that you remove an element from a specific index, 
regardless of the item that is stored at that index. This can be accomplished with the d e l  
statement. Here is an example of how to use the d e l  statement: 

my-list = [ l ,  2 ,  3 ,  4 ,  5 1  

print 'Before deletion:', my-list 

del my-list [ 2  ]  

print 'After deletion:', my-list 

This code will display the following: 

Before deletion: [ I ,  2 ,  3 ,  4 ,  5 1  

After deletion: 1 1 ,  2 ,  4 ,  5 1  

The min and max Functfons 
Python has two built-in functions named min and max that work with sequences. The min 
function accepts a sequence, such as a list or a string, as an argument and returns the item 
that has the lowest value in the sequence. Here is an example: 

my-list = [ 5 ,  4 ,  3,  2 ,  5 0 ,  4 0 ,  3 0 1  

print 'The lowest value is', min(my-list) 



8.3 Lists 307 

This code will display the following: 

The lowest value is 2 

The max function accepts a sequence, such as a list or a string, as an argument and returns 
the item that has the highest value in the sequence. Here is an example: 

my-list = [ 5 ,  4, 3, 2, 50, 40, 301 
print 'The highest value is', max(my-list) 

This code will display the following: 

The highest value is 50 

Concatenating Lists 
You can use the + operator to concatenate two lists. Here is an example: 

listl = [I, 2, 3, 4 1  

list2 = [5, 6, 7, 8 1  

list3 = listl + list2 

After this code executes, list3 will reference the following list: 

Copying Lists 
Recall that in Python, assigning one variable to another variable simply makes both vari- 
ables reference the same object in memory. For example, look at the following code: 

# Create a list. 
listl = [I, 2, 3, 41 

# Assign the list to the list2 variable. 

list2 = listl 

After this code executes, both variables listl and list2 will reference the same list in 
memory. This is shown in Figure 8-8. 

Figure 8-8 listl and list2 reference the same list 

listl 

list2 
Ti 

Suppose you wish to make a copy of the list, so that list1 and list2 reference two 
separate but identical lists. One way to do this is with a loop that copies each element of 
the list. Here is an example: 

# Create a list with values. 
listl = [I, 2, 3, 41 

# Create an empty list. 



308 Chapter 8 Working with Sequences: Strings and Lists 

list2 = [ ]  

# Copy the elements of listl to list2. 

for item in listl: 

list2.append(item) 

After this code executes, list1 and list2 will reference two separate but identical lists. 
A simpler and more elegant way to accomplish the same task is to use the concatenation 
operator, as shown here: 

# Create a list with values. 

listl = [I, 2, 3, 4 1  

# Create a copy of listl. 

list2 = [ ]  + listl 

The last statement in this code concatenates an empty list with listl and assigns the 
resulting list to list2. As a result, list 1 and list2 will reference two separate but iden- 
tical lists. 

So far you've learned a wide variety of techniques for working with lists. Now we will look 
at a number of ways that programs can process the data held in a list. For example, the fol- 
lowing In the Spotlight section shows how list elements can be used in calculations. 



NOTE: Suppose Megan's business increases and she hires two additional baristas. This 
would require you to change the program so it processes eight employees instead of six. 
Because you used a constant for the list size, this is a simple modification-you just 
change the statement in line 6 to read: 

NUM-EMPLOYEES = 8 

(continued) 



310 Chapter 8 Working with Sequences: Strings and Lists 

Because the NUM - EMPLOYEES constant is used in line 10 to create the list, the size of 
the h o u r s  list will automatically become eight. Also, because you used the 
NUM - EMPLOYEES constant to control the loop iterations in lines 13 and 21, the loops 
will automatically iterate eight times, once for each employee. 

Imagine how much more difficult this modification would be if you had not used a con- 
stant to determine the list size. You would have to change each individual statement in 
the program that refers to the list size. Not only would this require more work, but it 
would open the possibility for errors. If you overloolzed any one of the statements that 
refer to the list size, a bug would occur. 

~ @ + 2 -  ~ a ~ a n g  gQ %he Values fn a List 

Assuming a list contains numeric values, to calculate the total of those values you use a loop 
with an accumulator variable. The loop steps through the list, adding the value of each element 
to the accumulator. Program 8-16 demonstrates the algorithm with a list named numbers. 

Program 8-1 6 (total-list.py) 

# This program calculates the total of the values 
# in a list. 

def main ( ) : 

# Create a list. 
numbers = 12, 4, 6, 8, 101 

# Create a variable to use as an accumulator. 
total = 0 

# Calculate the total of the list elements. 
for value in numbers: 

total += value 

# Display the total of the list elements. 
print 'The total of the elements is', total 

# Call the main function. 

main ( ) 

Program Output 

The total of the elements is 30 

Averaging the Values In a List 
The first step in calculating the average of the values in a list is to get the total of the 
values. You saw how to do that with a loop in the preceding section. The second step is 



8.3 Lists 311 

to divide the total by the number of elements in the list. Program 8-17 demonstrates the 
algorithm. 

Program 8-17 (average-list.py) 

# This program calculates the average of the values 
# in a list. 

def main ( ) : 

# Create a list. 
scores = [2 .5 ,  8.3, 6.5, 4.0, 5 .21  

# Create a variable to use as an accumulator. 
total = 0.0 

# Calculate the total of the list elements. 

for value in scores: 

total += value 

# Calculate the average of the elements. 

average = total / len(scores) 

# Display the total of the list elements. 
print 'The average of the elements is', average 

# Call the main function. 

main ( ) 

Program Output 

The average of the elements is 5.3 

Passing a List as arn Argument to a Fuaction 

'Recall from Chapter 3 that as a program grows larger and more complex, it should be bro- 
ken down into functions that each performs a specific task. This makes the program easier 
to understand and to maintain. 

9 

You can easily pass a list as an argument to a function. This gives you the ability to put 
many of the operations that you perform on a list in their own functions. When you need 
to call these functions, you can pass the list as an argument. 

Program 8-18 shows an example of a program that uses such a function. The func- 
tion in this program accepts a list as an argument and returns the total of the list's 
elements. 



312 Chapter 8 Working with Sequences: Strings and Lists 

Program 8-1 8 (total_function.py) 

# This program uses a function to calculate the 

# total of the values in a list. 

def main ( ) : 

# Create a list. 
numbers = 12, 4, 6 ,  8, 1 0 1  

# Display the total of the list elements. 
print 'The total is', get-total(numbers) 

# The get-total function accepts a list as an 

# argument returns the total of the values in 
# the list. 
def get-total(va1ue-list): 

# Create a variable to use as an accumulator. 

total = 0 

# Calculate the total of the list elements. 
for num in value-list: 

total += num 

# Return the total 
return total 

Call the main function. 

Program Output 

The total is 30 

A function can return a reference to a list. This gives you the ability to write a function that 
creates a list and adds elements to it, and then returns a reference to the list so other parts 
of the program can work with it. The code in Program 8-19 shows an example. It uses a 
function named g e t  - values that gets a series of values from the user, stores them in a 
list, and then returns a reference to the list. 

Program 8-19 (return-list.py) 

1 # This program uses a function to create a list. 

2 # The function returns a reference to the list. 
3 



8.3 Lists 313 

def main ( ) : 

# Get a list with values stored in it. 
numbers = get-values ( ) 

# Display the values in the list. 
print 'The numbers in the list are: ' 
print numbers 

# The get-values function gets a series of numbers 
# from the user and stores them in a list. The 
# function returns a reference to the list. 
def get-values(): 

,# Create an empty list. 
values = [ I  

# Create a variable to control the loop. 
again = ' Y '  

# Get values from the user and add them to 
# the list. 
while again. upper ( ) == ' Y ' : 

# Get a number and add it to the list. 
num = input ( ' Enter a number: ' ) 

values.append(num) 

# Want to do this again? 
print 'Do you want to add another number?' 

again = raw-input( 'Y = yes, anything else = no: ' ) 

print 

# Return the list. 
return values 

# Call the main function. 
main ( ) 



314 Chapter 8 Working with Sequences: Strings and Lists 

(continued) 

lumber : 

~ n t  t o  E 
. . 

!e numbe 

r 2, 3 ,  

5 [Enter 
idd anot 

:he list 







= no: y 

[Enter] 
you wa 

= yes, 

nt to a 
anythin 

Some tasks may require you to save the contents of a list to a file so the data can be used at a 
later time. Likewise, some situations may require you to read the data from a file into a list. For 
example, suppose you have a file that contains a set of values that appear in random order and 
you want to sort the values. One technique for sorting the values in the file would be to read 
them into a list, call the list's s o r t  method, and then write the values in the list back to the file. 

Saving the contents of a list to a file is a straightforward procedure. In fact, Python file 
objects have a method named w r i t e l i n e s  that writes an entire list to a file. A drawback 
to the w r i t e l i n e s  method, however, is that it does not automatically write a newline 
( \ n  ) at the end of each item. Consequently, each item is written to one long line in the 
file. Program 8-21 demonstrates the method. 

Program 8-21 (write1ines.p~) 

1 # This program uses the writelines method to save 
2 # a list of strings to a file. 
3 

4 def main( ) : 

5 # Create a list of strings. 
6 cities = ['New York', 'Boston', 'Atlanta', 'Dallas'] 

7 

8 # Open a file for writing. 
9 outfile = open('cities.txtl, 'w1) 

s 0 
11 # Write the list to the file. 

$8 

1 2  outfile.writelines(cities) 
13 

14 # Close the file. 
15 outfile.close() 

16 

17 # Call the main function. 

1 8  main() 



318 Chapter 8 Working with Sequences: Strings and Lists 

After this program executes, the c i t i e s .  t x t  file will contain the following line: 

New YorkBostonAtlantaDallas 

An alternative approach is to use the for  loop to iterate through the list, writing each ele- 
ment with a terminating newline character. Program 8-22 shows an example. 

Program 8-22 (write-list.py) 

1 # This program saves a list of strings to a file. 

2 

3 def main(): 
# Create a list of strings. 

cities = ['New York', 'Boston', 'Atlanta', 'Dallas'] 

# Open a file for writing. 
outfile = open('cities.txtl, 'w') 

# Write the list to the file. 

for item in cities: 

outfile.write(item + '\n') 

# Close the file. 
outfile.close() 

17 # Call the main function. 

After this program executes, the c i t i e s .  t x t  file will contain the following lines: 

New York 

Boston 

Atlanta 

Dallas 

File objects in Python have a method named r e a d l i n e s  that returns a file's contents as a 
list of strings. Each line in the file will be an item in the list. The items in the list will include 
their terminating newline character, which in many cases you will want to strip. Program 
8-23 shows an example. The statement in line 8 reads the files contents into a list, and the 
loop in lines 15 through 17 steps through the list, stripping the \n  character from each 
element. 

Program 8-23 (read-list.py) 

1 # This program reads a file's contents into a list. 
2 

3 def main( ) : 

4 # Open a file for reading. 



8.3 Lists 319 

5 infile = open('cities.txt', ' r ' )  
6 
7 # Read the contents of the file into a list. 

8 cities = infile.readlines() 

9 

10 # Close the file. 
11 infile.close() 

12 

13 # Strip the \n from each element. 
14 index = 0 

15 while index < len(cities) : 
1 ti cities[index] = cities[index].rstrip('\n') 
17 index += 1 
18 

L 9 # Print the contents of the list. 
2 0 print cities 

2 1 

22 # Call the main function. 

23 main() 

k', 'Bo 

Proaram Output 

[ '  ston', 'Atlanta', 'Dallas'] 

Program 8-24 shows another example of how a list can be written to a file. In this exam- 
ple, a list of numbers is written. Notice that in line 12, each item is converted to a string 
with the str function, and then a \ n  is concatenated to it. 

Program 8-24 (write-number-list.py) 

1 # This program saves a list of numbers to a file. 

2 

3 def main( ) : 

4 # Create a list of numbers. 
5 numbers = [l, 2, 3 ,  4, 5 ,  6 ,  7 1  

6 

7 # Open a file for writing. 
8 outfile = open('numberlist.txt', 'w') 

9 

10 # write the list to the file. 
1 1 for item in numbers: 

12 outfile.write(str(item) + '\nt) 

13 

14 # Close the file. 
15 outfile.close() 

16 

17 # Call the main function. 
18 main() 



320 Chapter 8 Working w i t h  Sequences: Strings and Lists 

When you read numbers from a file into a list, the numbers will have to be converted from 
strings to a numeric type. Program 8-25 shows an example. 

Program 8-25 (read-number-list. py) 

# This program reads numbers from a file into a list. 

def main ( ) : 

# Open a file for reading. 
infile = open('numberlist.txt', 'r') 

# Read the contents of the file into a list. 
numbers = infile-readlines() 

# Close the file. 
infile.close() 

# Convert each element to an int. 
index = 0 

while index < len(numbers ) : 
16 numbers[index] = int(numbers[index]) 

L 7 index += 1 
18 

19 # Print the contents of the list. 
2 0 print numbers 

2 1 

22 # Call the main function. 

SpDIttlng a String 
Strings in Python have a method named s p l i t  that returns a list of the words in the string. 
Program 8-26 shows an example. 

Program 8-26 (string-split.py) 

1 # This program demonstrates the split method. 
2 

3 def main(): 

4 # Create a string with multiple words. 
5 my-string = 'One two three four' 

5 



8.3 Lists 321 

7 # Split the string. 
8 word-list = my-string.split() 
9 

10 # Print the list of words. 
11 print word-list 

12 

13 # Call the main function. 
14 main() 

Program Output 

['One', 'two', 'three', 'four'] 

By default, the s p l i t  method uses spaces as separators (that is, it returns a list of the 
words in the string that are separated by spaces). You can specify a different separator by 
passing it as an argument to the s p l i t  method. For example, suppose a string contains a 
date, as shown here: 

date-string = '3/26/2008' 

If you want break out the month, day, and year as items in a list, you can call the s p l i t  
method using the ' / ' character as a separator, as shown here: 

date-list = date-string.split('/') 

After this statement executes, the da te  - l i s t  variable will reference this list: 

Program 8-27 demonstrates this. 

Program 8-27 (split-date.py) 

# This program calls the split method, using the 
# '/I character as a separator. 

def main(): 

# Create a string with a date. 
date-string = '11/26/2008' 

# Split the date. 
date-list = date-string.split('/') 

# Display each piece of the date. 
print 'Month:', date-list[O] 

print 'Day:', date-list[l] 

print 'Year:', date_list[2] 

(program continues) 



322 Chapter 8 Working with Sequences: Strings and Lists 

Program 8-27 (continued) 

16 # Call the main function. 

15 main() 

8.18 What will the following code display? 

numbers = [I, 2, 3, 4, 51 

numbers [2] = 99 

print numbers 

What will the following code display? 

numbers = [I, 2, 3, 4, 51 

my-list = numbers[l:3] 

print my-list 

How do you find the number of elements in a list? 

What is the difference between calling a list's remove method and using the d e l  
statement to remove an element? 

How do you find the lowest and highest values in a list? 

Assume the following statement appears in a program: 

names = [ ]  

Which of the following statements would you use6to add the string Wendy to 
the list at index O ?  Why would you select this statement instead of the other? 

a. names[O] = 'Wendy' 
b. names.append( 'Wendy')  

Describe the following list methods: 

a. i n d e x  
b. i n s e r t  
c. s o r t  
d. r e v e r s e  

Assume the following statement appears in a program: 

d a y s  = 'Monday Tuesday Wednesday' 

Write a statement that splits the string, creating the following list: 

[ 'Monday ' ,  ' T u e s d a y ' ,  'Wednesday']  

Briefly describe how you calculate the total of the values in a list. 

Briefly describe how you get the average of the values in a list. 















1 9.1 Procedural and Object-Oriented 9.3 Working with Instances 
I 
! Programming 

I 
9.4 Techniques for Designing Classes 1 

i 9.2 Classes 1 
I 

- 

CONCEPT: Procedural programming is a method of writing software. It is a pro- 
gramming practice centered on the procedures or actions that take place 
in a program. Object-oriented programming is centered on objects. 
Objects are created from abstract data types that encapsulate data and 
functions together. 

There are primarily two methods of programming in use today: procedural and object- 
oriented. The earliest programming languages were procedural, meaning a program was 
made of one or more procedures. You can think of a procedure simply as a function that 
performs a specific task such as gathering input from the user, performing calculations, 
reading or writing files, displaying output, and so on. The programs that you have written 
so far have been procedural in nature. 

Typically, procedures operate on data items that are separate from the procedures. In a 
procedural program, the data items are commonly passed from one prbcedure to another. 
As you might imagine, the focus of procedural programming is on the creation of pro- 
cedures that operate on the program's data. The separation of data and the code that 
operates on the data can lead to problems, however, as the program becomes larger and 
more complex. 

For example, suppose you are part of a programming team that has written an extensive 
customer database program. The program was initially designed so that a customer's 



330 Chapter 9 Classes and Object-Oriented Programming 

name, address, and phone number were referenced by three variables. Your job was to 
design several functions that accept those three variables as arguments and perform oper- 
ations on them. The software has been operating successfully for some time, but your 
team has been asked to update it by adding several new features. During the revision 
process, the senior programmer informs you that the customer's name, address, and 
phone number will no longer be stored in variables. Instead, they will be stored in a list. 
This means that you will have to modify all of the functions that you have designed so 
that they accept and work with a list instead of the three variables. Malting these exten- 
sive modifications not only is a great deal of work, but also opens the opportunity for 
errors to appear in your code. 

Whereas procedural programming is centered on creating procedures (functions), object- 
oriented programming (OOP) is centered on creating objects. An object is a software entity 
that contains both data and procedures. The data contained in an object is known as the 
object's data attributes. An object's data attributes are simply variables that reference data. 
The procedures that an object performs are known as methods. An object's methods are 
functions that perform operations on the object's data attributes. The object is, conceptu- 
ally, a self-contained unit that consists of data attributes and methods that operate on the 
data attributes. This is illustrated in Figure 9-1. 

r e  9 -  An object contains data attributes and methods 

Object 

OOP addresses the problem of code and data separation through encapsulation and data 
hiding. Encapsulation refers to the combining of data and code into a single object. Data 
hiding refers to an object's ability to hide its data attributes from code that is outside the 
object. Only the object's methods may directly access and make changes to the object's data 
attributes. 

An object typically hides its data, but allows outside code to access its methods. As shown 
in Figure 9-2, the object's methods provide programming statements outside the object with 
indirect access to the object's data attributes. 



9.1 Procedural and Object-Oriented Programming 331 

Flqvve 9-22 Code outside the object interacts with the object's methods 

Code 
outside th 

object 

When an object's data attributes are hidden from outside code, and access to the data attrib- 
utes is restricted to the object's methods, the data attributes are protected from accidental 
corruption. In addition, the code outside the object does not need to know about the format 
or internal structure of the object's data. The code only needs to interact with the object's 
methods. When a programmer changes the structure of an object's internal data attributes, 
he or she also modifies the object's methods so that they may properly operate on the data. 
The way in which outside code interacts with the methods, however, does not change. 

In addition to solving the problems of code and data separation, the use of OOP has also 
been encouraged by the trend of object reusability. An object is not a stand-alone program, 
but is used by programs that need its services. For example, Sharon is a programmer who 
has developed a set of objects for rendering 3D images. She is a math whiz and knows a lot 
about computer graphics, so her objects are coded to perform all of the necessary 3D math- 
ematical operations and handle the computer's video hardware. Tom, who is writing a pro- 
gram for an architectural firm, needs his application to display 3D images of buildings. 
Because he is working under a tight deadline and does not possess a great deal of knowl- 
edge about computer graphics, he can use Sharon's objects to perform the 3D rendering (for 
a small fee, of course!). 

AE Eveqday Example of an Qbiec2 

Imagine that your alarm clock is actually a software object. If it werepit would have the 
following data attributes: 

0 current- second (a value in the range of 0-59) 
current- minute  (a value in the range of 0-59) 
current- hour  (a value in the range of 1-12) 
a l a r m  - t i m e  (a valid hour and minute) 

* alarm-is-set  (True or False) 



332 Chapter 9 Classes and Object-Oriented Programming 

As you can see, the data attributes are merely values that define the state that the alarm 
clock is currently in. You, the user of the alarm clock object, cannot directly manipulate 
these data attributes because they are private. To change a data attribute's value, you 
must use one of the object's methods. The following are some of the alarm clock object's 
methods: 

@ s e t - t i m e  
@ se t  - alarm- time 
0 set - alarm-on 

set - alarm-off 

Each method manipulates one or more of the data attributes. For example, the set t i m e  
method allows you to set the alarm clock's time. You activate the method by pressinLa but- 
ton on top of the clock. By using another button, you can activate the se t- alarm - t i m e  
method. 

In addition, another button allows you to execute the set-alarm-on and set  - a l a r m  o f f  
methods. Notice that all of these methods can be activated by you, who are outside the 
alarm cloclc. Methods that can be accessed by entities outside the object are known as 
public methods. 

The alarm cloclc also has private methods, which are part of the object's private, internal 
workings. External entities (such as you, the user of the alarm clock) do not have direct 
access to the alarm clock's private methods. The object is designed to execute these meth- 
ods automatically and hide the details from you. The following are the alarm clock object's 
private methods: 

inc rement  - current- second 
inc rement  - current- minute  

@ i nc rement  - current- hour  
9 sound-alarm 

Every second the inc rement- cur ren t  - second method executes. This changes the 
value of the c u r r e n t  - second data attribute. If the cu r ren t- second  data attribute is 
set to 59 when this method executes, the method is programmed to reset current- second 
to 0, and then cause the increment- current- minute method to execute. This 
method adds 1 to the c u r r e n t  - minute  data attribute, unless it is set to 59. In that case, 
it resets c u r r e n t  - minute  to 0 and causes the increment- current- hour  method to 
execute. The inc rement  - cur ren t- minu te  method compares the new time to the 
a l a r m  t i m e .  If the two times match and the alarm is turned on, the sound - a l a r m  
methodis executed. 

r~ Checkpoint 

9.1 What is an object? 

9.2 What is encapsulation? 

9.3 Why is an object's internal data usually hidden from outside code? 

9.4 What are ~ub l i c  methods? What are private methods? 



9.2 Classes 333 

 re"^ ,:8~%er 

CONCEPT: A class is code that specifies the data attributes and methods for a particular 
type of object. 

Now, let's discuss how objects are created in software. Before an object can be created, it 
must be designed by a programmer. The programmer determines the data attributes and 
methods that are necessary, and then creates a class. A class is code that specifies the data 
attributes and methods of a particular type of object. Think of a class as a "blueprint" that 
objects may be created from. It serves a similar purpose as the blueprint for a house. The 
blueprint itself is not a house, but is a detailed description of a house. When we use the 
blueprint to build an actual house, we could say we are building an instance of the house 
described by the blueprint. If we so desire, we can build several identical houses from the 
same blueprint. Each house is a separate instance of the house described by the blueprint. 
This idea is illustrated in Figure 9-3. 

"3gure 3-3 A blue~tint and houses built from the blueprint 

Blueprint that describes a house 

Instances of the house described by the blueprint 

Another way of thinking about the difference between a class and an object is to think of 
the difference between a cookie cutter and a cookie. While a cookie cater  itself is not a 
cookie, it describes a cookie. The cookie cutter can be used to make several cookies, as 
shown in Figure 9-4. Think of a class as a cookie cutter and the objects created from the 
class as cookies. 

So, a class is a description of an object's characteristics. When the program is running, it 
can use the class to create, in memory, as many objects of a specific type as needed. Each 
object that is created from a class is called an instance of the class. 



334 Chapter 9 Classes and Object-Oriented Programming 

Fkt;?a_nrr? 9-8 The cootie cutter rnetaoho: 

Cookies 

For example, Jessica is an entomologist (someone who studies insects) and she also enjoys 
writing computer programs. She designs a program to catalog different types of insects. As 
part of the program, she creates a class named I n s e c t ,  which specifies characteristics that 
are common to all types of insects. The I n s e c t  class is a specification that objects may be 
created from. Next, she writes programming statements that create an object named 
housef  l y ,  which is an instance of the I n s e c t  class. The h o u s e f l y  object is an entity 
that occupies computer memory and stores data about a housefly. It has the data attributes 
and methods specified by the I n s e c t  class. Then she writes programming statements that 
create an object named mosquito.  The mosqui to  object is also an instance of the 
I n s e c t  class. It has its own area in memory, and stores data about a mosquito. Although 
the h o u s e f l y  and mosqu i to  objects are separate entities in the computer's memory, they 
were both created from the I n s e c t  class. This means that each of the objects has the data 
attributes and methods described by the I n s e c t  class. This is illustrated in Figure 9-5. 

"taure 9-5 The bousef l y  and mosqui to  objects are instances of the Insect class 

The housefly Object IS an 
~nstance of the Insect class It 

, Insect 
has the data attr~butes and methods 

object 
The Insect class describes 

I - - - - - descr~bed by the Insect class 

the data attr~butes and 
methods that a part~cular class 

I type of object may have , - - - - , The mosquito object IS an 
Instance of the Insect class It 

has the data attributes and methods 
descr~bed by the Insect class 

mosquito 
object 

To create a class, you write a cEass definition. A class definition is a set of statements that 
define a class's methods and data attributes. Let's look at a simple example. Suppose we are 
writing a program to simulate the tossing of a coin. In the program we need to repeatedly 



9.2 Classes 335 

toss the coin and each time determine whether it landed heads up or tails up. Taking an 
object-oriented approach, we will write a class named Coin  that can perform the behav- 
iors of the coin. 

Program 9-1 shows the class definition, which we will explain shortly. Note that this is not 
a complete program. We will add to it as we go along. 

(Coin class, not a complete program) 

1 import random 

2 

3 # The Coin class simulates a coin that can 
4 # be flipped. 

S 

6 class Coin: 

# The --init-- method initializes the 
# sideup data attribute with 'Heads'. 

def --init--(self) : 

self .sideup = 'Heads' 

# The toss method generates a random number 
# in the range of 0 through 1. If the number 
# is 0, then sideup is set to ' Heads ' . 
# Otherwise, sideup is set to 'Tails' . 

def toss (self) : 
if random.randint(0, 1) == 0: 

self. sideup = 'Heads ' 

else: 

self. sideup = 'Tails ' 

# The get-sideup method returns the value 
# referenced by sideup. 

In line 1 we import the random module. This is necessary because w% use the r a n d i n t  
function to generate a random number. Line 6 is the beginning of the class definition. It 
begins with the keyword class, followed by the class name, which is c o i n ,  followed by 
a colon. 

The same rules that apply to variable names also apply to class names. However, notice that 
we started the class name, Coin, with an uppercase letter. This is not a requirement, but it 
is a widely used convention among programmers. This helps to easily distinguish class 
names from variable names when reading code. 



336 Chapter 9 Classes and Object-Oriented Programming 

The c o i n  class has three methods: 

* The in i t - -  method appears in lines 11 through 12. 
@ The toss method appears in lines 19 through 23. 

The g e t  - s i d e u p  method appears in lines 28 through 29. 

Except for the fact that they appear inside a class, notice that these method definitions look 
like any other function definition in Python. They start with a header line, which is fol- 
lowed by an indented block of statements. 

Take a closer look at the header for each of the method definitions (lines 11, 19, and 28) 
and notice that each method has a parameter variable named s e l f :  

Line 11: def --init--(self) : 

Line 19: def toss (self ) : 

Line 28: def get-sideup(se1f): 

The s e l f  parameter1 is required in every method of a class. Recall from our earlier discus- 
sion on object-oriented programming that a method operates on a specific object's data 
attributes. When a method executes, it must have a way of knowing which object's data 
attributes it is supposed to operate on. That's where the s e l f  parameter comes in. When 
a method is called, Python makes the s e l f  parameter reference the specific object that the 
method is supposed to operate on. 

Let's look at each of the methods. The first method, which is named --init--, is defined 
in lines 11 through 12: 

def --init--(self) : 

self. sideup = ' Heads ' 

Most Python classes have a special method named -- init-,  which is automatically exe- 
cuted when an instance of the class is created in memory. The - - i n i t  -- method is com- 
monly known as an initializer method because it initializes the object's data attributes. (The 
name of the method starts with two underscore characters, followed by the word i n i t ,  fol- 
lowed by two more underscore characters.) 

Immediately after an object is created in memory, the - - in i t  -- method executes, and the 
s e l f  parameter is automatically assigned the object that was just created. Inside the 
method, the statement in line 12 executes: 

self. sideup = 'Heads ' 

This statement assigns the string ' Heads ' to the s i d e u p  data attribute belonging to the 
object that was just created. As a result of this - - i n i t  -- method, each object that we cre- 
ate from the Coin class will initially have'a s i d e u p  attribute that is set to ' Heads ' . 

The parameter must be present in a method. You are not required to name it self, but this is strongly recom- 
mended to conform with standard practice. 



9.2 Classes 337 

The t o s s  method appears in lines 19 through 23: 

def toss (self) : 

if random.randint(0, 1) == 0: 

self. sideup = 'Heads ' 
else: 

self. sideup = 'Tails ' 

This method also has the required s e l f  parameter variable. When the t o s s  method is 
called, s e l f  will automatically reference the object that the method is to operate on. 

The t o s s  method simulates the tossing of the coin. When the method is called, the i f  
statement in line 20 calls the r andom. rand in t  function to get a random integer in the 
range of 0 through 1. If the number is 0, then the statement in line 21 assigns ' Heads ' to 
s e l f .  s i d e u p .  Otherwise, the statement in line 23 assigns ' T a i l s  ' to s e l f .  s ideup .  

The g e t  - s i d e u p  method appears in lines 28 through 29: 

def get-sideup(se1f): 

return self.sideup 

Once again, the method has the required s e l f  parameter variable. This method simply 
returns the value of s e l f .  s ideup .  We call this method any time we want to know which 
side of the coin is facing up. 

To demonstrate the Coin class, we need to write a complete program that uses it to cre- 
ate an object. Program 9-2 shows an example. The Coin  class definition appears in lines 
6 through 29. The program has a main function, which appears in lines 32 through 44. 

1 import random 

2 

# The Coin class simulates a coin that can 
# be flipped. 

class Coin: 

# The --init-- method initializes the 

# sideup data attribute with 'Heads'. 

def --init--(self) : 

self. sideup = 'Heads ' 

# The toss method generates a random number 
# in the range of 0 through 1. If the number 

# is 0, then sideup is set to 'Heads'. 

# Otherwise, sideup is set to 'Tails'. 

def toss (self) : 

if random.randint(0, 1) == 0: 

(program continues) 



338 Chapter 9 Classes and Object-Oriented Programming 

(continued) 

self. sideup = ' Heads ' 

else : 
self. sideup = 'Tails ' 

# The get-sideup method returns the value 
# referenced by sideup. 

def get-sideup(se1f): 

return self.sideup 

# The main function. 
def main(): 

# Create an object from the Coin class. 

my-coin = Coin ( ) 

# Display the side of the coin that is facing up. 
print 'This side is up:', my-coin.get-sideup() 

# Toss the coin. 
print 'I am tossing the coin.. . ' 
my-coin.toss() 

# Display the side of the coin that is facing up. 
print 'This side is up:', my-coin.get-sideup() 

# Call the main function. 
main ( ) 

Talte a closer look at the statement in line 34: 

my-coin = Coin ( ) 



9.2 Classes 339 

The expression Coin ( ) that appears on the right side of the = operator causes two things 
to happen: 

1. An object is created in memory from the Coin class. 
2. The Coin class's i n i t  method is executed, and the s e l f  parameter is automat- 

ically set to the object thatwas just created. As a result, that object's s i d e u p  attrib- 
ute is assigned the string ' Heads ' . 

Figure 9-6 illustrates these steps. 

e ' r n ~ ~ d ?  9-6 Actions caused by the Coin ( ) expression 

A Coin object 

An object is created in memory @ from the coin class. 

The Coin class's -init- 
method is called, and the self 

t 
def -init-(self) : @ parameter is set to the newly self.sideup = 'Heads' 

created object 

A Coin object 
After these steps take place, 
a Coin object will exist with its 
sideup attribute set to 'Heads ' . 

After this, the = operator assigns the Coin object that was just created to the my - c o i n  
variable. Figure 9-7 shows that after the statement in line 12 executes, the my-coin vari- 
able will reference a Coin object, and that object's s i d e u p  attribute will be assigned the 
string ' Heads ' . 

The next statement to execute is line 37: 

"$~@-e  9-7 The my - c o i n  variable references a Coin object 

A Coln object 

print 'This side is up:', my-coin.get-sideup() $; 

my - coln - 

This statement prints a message indicating the side of the coin that is facing up. Notice that 
the following expression appears in the statement: 

sldeup - '~eads' 

This expression uses the object referenced by my-coin to call the g e t  s i d e u p  method. 
When the method executes, the s e l f  parameter will reference the my - c o i n  object. As a 
result, the method returns the string Heads ' . 



340 Chapter 9 Classes and Object-Oriented Programming 

Notice that we did not have to pass an argument to the s i d e u p  method, despite the fact 
that it has the s e l f  parameter variable. When a method is called, Python automatically 
passes a reference to the calling object into the method's first parameter. As a result, the 
s e l f  parameter will automatically reference the object that the method is to operate on. 

Lines 40 and 41 are the next statements to execute: 

print 'I am tossing the coin..,' 

my-coin,toss() 

The statement in line 41 uses the object referenced by my - c o i n  to call the t o s s  method. 
When the method executes, the s e l f  parameter will reference the my - c o i n  object. The 
method will randomly generate a number and use that number to change the value of the 
object's s i d e u p  attribute. 

Line 44 executes next. This is another p r i n t  statement that calls my - c o i n .  g e t  - s i d e u p  ( ) 
to display the side of the coin that is facing LIP. 

Earlier in this chapter we mentioned that an object's data attributes should be private, so 
that only the object's methods can directly access them. This protects the object's data 
attributes from accidental corruption. However, in the Coin class that was shown in the 
previous example, the s i d e u p  attribute is not private. It can be directly accessed by state- 
ments that are not in a Coin class method. Program 9-3 shows an example. Note that lines 
1 through 30 are not shown to conserve space. Those lines contain the Coin class, and they 
are the same as lines 1 through 30 in Program 9-2. 

Program 9-3 (coin-.demo2.py) 

Lines 1 through 30 are omitted. These lines are the same as lines 1 through 30 in Program 9-2. 

31 # The main function. 
32 def main(): 

3 3 # Create an object from the Coin class. 

3 4 my-coin = Coin( ) 

3 5 

3 6 # Display the side of the coin that is facing up. 

37 print 'This side is up:', my-coin.get-sideup() 

3 8 

3 9 # Toss the coin. 
4 0 print 'I am tossing the coin. . . ' 
4 1 my-coin.toss() 

4 2 

4 3 # But now I'm going to cheat! I'm going to 

4 4 # directly change the value of the object's 

4 5 # sideup attribute to 'Heads ' . 
4 6 my-coin.sideup = 'Heads' 

4 7 

4 8 # Display the side of the coin that is facing up. 



9.2 Classes 341 

4 9 print 'This side is up:', my-coin.get-sideup() 

5 0 

51 # Call the main function. 

5 2  main() 

Line 34 creates a Coin object in memory and assigns it to the m y c o i n  variable. The 
p r i n t  statement in line 37 displays the side of the coin that is facing up, and then line 41 calls 
the object's t o s s  method. Then the statement in line 46 directly assigns the string ' Heads ' 
to the object's s i d e u p  attribute: 

my-coin.sideup = 'Heads' 

Regardless of the outcome of the t o s s  method, this statement will change the my - c o i n  
object's s i d e u p  attribute to Heads I .  As you can see from the three sample runs of the 
program, the coin always lands heads up! 

If we truly want to simulate a coin that is being tossed, then we don't want code outside 
the class to be able to change the result of the t o s s  method. To prevent this from happen- 
ing, we need to make the s i d e u p  attribute private. In Python you can hide an attribute by 
starting its name with two underscore characters. If we change the name of the s i d e u p  
attribute to -sideup, then code outside the Coin class will not be able to access it. 
Program 9-4 shows a new version of the Coin class, with this change made. 

Program 9-4 (coin.. demo3.p~)  

L import random 

2 

3 # The Coin class simulates a coin that can 
4 # be flipped. 

5 

6 class Coin: 

7 

8 # The --init-- method initializes the 
(program continues) 



342 Chapter 9 Classes and Object-Oriented Programming 

Program 9-4 (continued) 

# --sideup data attribute with 'Heads'. 

def -- init--(self) : 
self.--sideup = 'Heads' 

# The toss method generates a random number 
# in the range of 0 through 1. If the number 
# is 0, then sideup is set to ' Heads ' . 
# Otherwise, sideup is set to 'Tails ' . 

def toss (self) : 

if random.randint(0, 1) == 0: 

self .--sideup = 'Heads ' 
else : 

self .--sideup = 'Tails' 

# The get-sideup method returns the value 
# referenced by sideup. 

def get-sideup(se1f): 

return self .--sideup 

# The main function. 
def main( ) : 

# Create an object from the Coin class. 
my-coin = Coin( ) 

# Display the side of the coin that is facing up. 
print 'This side is up: ' , mLcoin. get-sideup( ) 

# Toss the coin. 
print 'I am going to toss the coin ten times: ' 

for count in range ( 10 ) : 

my-coin.toss() 
print my-coin-get-sideup() 

# Call the main function. 

main ( ) 

- 

his sidc 

am goi 
a i  1s 

Program Output 

T : Heads 

I oss the coin ten times: 

T 

H 

H 

eads 

eads 



9.2 Classes 343 

Stsrlng Classes in Modales 

The programs you have seen so far in this chapter have the Coin class definition in the 
same file as the programming statements that use the Coin  class. This approach works fine 
with small programs that use only one or two classes. As programs use more classes, how- 
ever, the need to organize those classes becomes greater. 

Programmers commonly organize their class definitions by storing them in modules. Then the 
modules can be imported into any programs that need to use the classes they contain. For exam- 
ple, suppose we decide to store the Coin class in a module named s imula t ion .  Program 9-5 
shows the contents of the s i m u l a t i o n  .py file. Then, when we need to use the Coin class in 
a program, we can import the s i m u l a t i o n  module. This is demonstrated in Program 9-6. 

Program 9-5 (simulation.py) 

import random 

# The Coin class simulates a coin that can 
# be flipped. 

class Coin: 

# The --init-- method initializes the 

# --sideup data attribute with 'Heads'. 

def -- init--(self) : 

self .--sideup = ' Heads ' 

# The toss method generates a random number 
# in the range of 0 through 1. If the number 
# is 0, then sideup is set to 'Heads'. 
# Otherwise, sideup is set to ' Tails ' . 

def toss(se1f): 
if random.randint(0, 1) == 0: 

self .--sideup = ' Heads ' 
else: 

self .--sideup = ' Tails ' 

(program continues) 



344 Chapter 9 Classes and Object-Oriented Programming 

Program 9-5 (continued) 

24 

25 # The get-sideup method returns the value 

2 6 # referenced by sideup. 

def get-sideup(se1f): 

return self .--sideup 

1 # This program imports the simulation module and 
2 # creates an instance of the Coin class. 

import simulation 

def main ( ) : 

# Create an object from the Coin class. 
my - coin = simulation.Coin() 

# Display the side of the coin that is facing up. 

print 'This side is up:', my-coin.get-sideup() 

# Toss the coin. 
print 'I am going to toss the coin ten times: ' 
for count in range(l0): 

my-coin.toss() 

print my-coin.get-sideup() 

# Call the main function. 
main ( ) 



9.2 Classes 345 

Line 4 imports the s i m u l a t i o n  module. Notice that in line 8 we had to qualify the name 
of the C i r c l e  class by prefixing it with the name of the module, followed by a dot: 

my-coin = simulation.Coin() 

The BankAccount Class 
Let's look at another example. Program 9-7 shows a BankAccount class, stored in a module 
named account.  Objects that are created from this class will simulate bank accounts, allowing 
us to have a starting balance, make deposits, make withdrawals, and get the current balance. 

1 # The BankAccount class simulates a bank account. 
2 

3 class BankAccount: 
4 

5 # The -- init-- method accepts an argument for 
6 # the account's balance. It is assigned to 
7 # the balance attribute. -- 
8 

9 def -- init--(self, bal) : 
10 self .--balance = bal 
1 I 

12 # The deposit method makes a deposit into the 

13 # account. 
14 

15 def deposit(self, amount): 

self .--balance += amount 

# The withdraw method withdraws an amount 
# from the account. 

def withdraw(self, amount): 
if self .--balance >= amount: 

self .--balance -= amount 
else : 

print 'Error: Insufficient funds' 

# The get-balance method returns the 

# account balance. o 

Notice that the --init-- method has two parameter variables: s e l f  and b a l .  The b a l  
parameter will accept the account's starting balance as an argument. In line 10 the b a l  
parameter amount is assigned to the object's --balance attribute. 



346 Chapter 9 Classes and Object-Oriented Programming 

The d e p o s i t  method is in lines 15 through 16. This method has two parameter variables: 
s e l f  and amount. When the method is called, the amount that is to be deposited into the 
account is passed into the amount parameter. The value of the parameter is then added to 
the -- b a l a n c e  attribute in line 16. 

The wi thdraw method is in lines 21 through 25. This method has two parameter vari- 
ables: s e l f  and amount. When the method is called, the amount that is to be withdrawn 
from the account is passed into the amount parameter. The i f  statement that begins in line 
22 determines whether there is enough in the account balance to make the withdrawal. If 
so, amount is subtracted from --balance in line 23. Otherwise line 25 displays the message 
' E r r o r :  I n s u f f i c i e n t  f u n d s ' .  

The g e t  - b a l a n c e  method is in lines 30 through 31. This method returns the value of the 

-- b a l a n c e  attribute. 

Program 9-8 demonstrates how to use the class. 

# This program demonstrates the BankAccount class. 

import account 

def main( ) : 

# Get the starting balance. 
start-bal = input('Enter your starting balance: ' )  

# Create a BankAccount object. 
savings = account.BankAccount(start~ba1) 

# Deposit the user's paycheck. 

pay = input ( ' How much were you paid this week? ' ) 

print ' I will deposit that into your account. ' 

savings.deposit(pay) 

# Display the balance. 

print 'Your account balance is $%.2f.' 8 savings.get-balance() 

# Get the amount to withdraw.. 
cash = input( 'How much would you like to withdraw? ' ) 

print ' I will withdraw that from your account. ' 
savings.withdraw(cash) 

# Display the balance. 
print 'Your account balance is $%.2f.'% savings.get-balance() 

# Call the main function. 
main ( ) 



9.2 Classes 347 

Line 7 gets the starting account balance from the user and assigns it to the s t a r t - b a l  
variable. Line 10 creates an instance of the BankAccount class and assigns it to the s a v i n g s  
variable. Take a closer look at the statement: 

savings = account.BankAccount(start~ba1) 

Notice that the s t a r t  - b a l  variable is listed inside the parentheses. This causes the 
s t a r t  b a l  variable to be passed as an argument to the - - in i t  -- method. In the -- ini t--  
method, it will be passed into the b a l  parameter. 

Line 13 gets the amount of the user's pay and assigns it to the pay variable. In line 15 the 
s a v i n g s  . d e p o s i t  method is called, passing the pay variable as an argument. In the 
d e p o s i t  method, it will be passed into the amount parameter. 

Line 18 displays the account balance. The p r i n t  statement displays the value returned 
from the s a v i n g s .  g e t  - b a l a n c e  method. 

Line 21 gets the amount that the user wants to withdraw and assigns it to the c a s  
able. In line 23 the s a v i n g s  .wi thdraw method is called, passing the c a s h  va 
an argument. In the wi thdraw method, it will be passed into the amount param 
26 displays the ending account balance. 

The str method -- -- 
Quite often we need to display a message that indicates an object' 
is simply the values of the object's attributes at any given momen 
the BankAccount class has one data attribute: --balance. 
BankAccount object's -- b a l a n c e  attribute will reference 

-- b a l a n c e  attribute represents the object's state at that mo 
an example of code that displays a BankAccount object's stat 

account = BankAccount(1500.0) 

print 'Your account balance is $%. 2f. ' % saving 



348 Chapter 9 Classes and Object-Oriented Programming 

The first statement creates a BankAccount object, passing the value 1500.0 to the -- ini t  
method. After this statement executes, the account  variable will reference the ~ a n ~ c c o u n t  
object. In the second line, the p r i n t  statement displays a string showing the value of the 
object's -- b a l a n c e  attribute. The output of this statement will look like this: 

Your account balance is $1500 .00 .  

Displaying an object's state is a common task. It is so common that many programmers equip 
their classes with a method that returns a string containing the object's state. In Python, you 
give this method the special name s t i - .  Program 919 shows the BankAccount ciass 
with a --str-- method added to % T ~ h e  --stc- method appears in lines 36 through 39. 
It creates a string containing the account balance, and returns that string. 

Program 9-9 (account2.p~) 

1 # The BankAccount class simulates a bank account. 
2 

3 class BankAccount : 

4 

5 # The --init-- method accepts an argument for 

6 # the account's balance. It is assigned to 
7 # the --balance attribute. 
9 

9 def --init--(self, bal) : 

1 0  self .--balance = bal 

12 # The deposit method makes a deposit into the 
13 # account. 
1 4 

1 5 def deposit(self, amount): 

16 self .--balance += amount 
17 

18 # The withdraw method withdraws an amount 
19 # from the account. 

2 0 

2 I def withdraw(self, amount): 

2 2 if self .--balance >= amount: 
2 3 self. balance -= amount -- 
2 4 else: 

2 5 print 'Error: Insufficient funds' 

2 6 

2 7 # The get-balance method returns the 
2 8 # account balance. 
2 9 

3 0 def get-balance(se1f): 

3 1 return self.--balance 

3 3 # The --str-- method returns a string 

3 4 # indicating the object's state. 



9.2 Classes 349 

3 5 

3 6 def --str--(self) : 

3 7 state-string = 'The account balance is $%.2f.' \ 
% self .--balance 

return state strin 

You do not directly call the -- str -- method. Instead, it is automatically called when you 
pass the object's name to the p r i n t  statement. Program 9-10 shows an example. 

Program 9-10 (account-test2.p~) 

# This program demonstrates the BankAccount class 
# with the --str-- method added to it. 

import account2 

def main(): 
# Get the starting balance. 
start-bal = input('Enter your starting balance: ' )  

# Create a BankAccount object. 

savings = account2.BankAccount(start~bal) 

# Deposit the user's paycheck. 
pay = input ( ' How much were you paid this week? ' ) 

print ' I will deposit that into your account. ' 
savings.deposit(pay) 

# Display the balance. 
print savings 

# Get the amount to withdraw. 
cash = input('How much would you like to withdraw? ' )  

print ' I will withdraw that from your account. ' 
savings.withdraw(cash) 

# Display the balance. 
print savings 

# Call the main function. 

main ( ) 

Program Output (with input shown in bold) 

Enter your starting balance: 1000.00 [Fnter] 
How much were you paid this week? 500.0" [Fnter] 
I will deposit that Into your account. 

(program output continues) 



350 Chapter 9 Classes and Object-Oriented Programming 

'he acc 

OW muc 
'.., 

:ount b; 

:h woulc . . .  . from yc 
. - - - -  

The name of the object, s a v i n g s ,  is passed to the p r i n t  statements in lines 19 and 27. 
This causes the BankAccount class's --str-- method to be called. The string that is 
returned from the --str-- method is then displayed. 

The -- str  -- method is also called automatically when an object is passed as an argument 
to the built-in s tr  function. Here is an example: 

account = BankAccount(1500.0) 

message = str(account) 

print message 

In the second statement, the account  object is passed as an argument to the str function. This 
causes the BankAccount class's --str-- method to be called. The string that is returned is 
assigned to the message variable and then displayed by the p r i n t  statement in the third line. 

Checkpoint 

9.5 You hear someone make the following comment: "A blueprint is a design for a 
house. A carpenter can use the blueprint to build the house. If the carpenter 
wishes, he or she can build several identical houses from the same blueprint." 
Think of this as a metaphor for classes and objects. Does the blueprint represent a 
class, or does it represent an object? 

9.6 In this chapter, we use the metaphor of a cookie cutter and cookies that are made 
from the cookie cutter to describe classes and objects. In this metaphor, are objects 
the cookie cutter, or the cookies? 

9.7 What is the purpose of the --init-- method? When does it execute? 

9.8 What is the purpose of the s e l f  parameter in a method? 

9.9 In a Python class, how do you hide an attribute from code outside the class? 

9.10 What is the purpose of the --str -- method? 

9.11 How do you call the --str -- method? 

a80rkina wvith instances 

i- CONCEPT: Each instance of a class has its own set of data attributes. 

When a method uses the s e l f  parameter to create an attribute, the attribute belongs to the 
specific object that s e l f  references. We call these attributes instance attributes, because 
they belong to a specific instance of the class. 

It is possible to create many instances of the same class in a program. Each instance will 
then have its own set of attributes. For example, look at Program 9-11. This program cre- 
ates three instances of the Coin class. Each instance has its own --sideup attribute. 



9.3 Working with Instances 351 

Program 9-1 1 (coin-demo5.p~) 

# This program imports the simulation module and 
# creates three instances of the Coin class. 

import simulation 

def main( ) : 
# Create three objects from the Coin class. 
coin1 = simulation.Coin() 
coin2 = simulation.Coin() 

coin3 = simulation.Coin() 

# Display the side of each coin that is facing up. 
print 'I have three coins with these sides up:' 
print coinl-get-sideup() 
print coin2.get-sideup() 

print coin3.get-sideup() 
print 

# Toss the coin. 
print ' I am tossing all three coins. . . ' 
print 
coinl.toss() 
coin2.toss() 

coin3.toss() 

# Display the side of each coin that is facing up. 
print 'Now here are the sides that are up:' 

print coinl.get-sideup() 
print coin2.get-sideup() 
print coin3.get-sideup() 
print 

# Call the main function. 
main ( ) 



352 Chapter 9 Classes and Object-Oriented Programming 

In lines 8 through 10, the following statements create three objects, each an instance of the 
Coin class: 

coinl = simulation.Coin() 

coin2 = simulation.Coin() 
coin3 = simulation.Coin() 

Figure 9-8 illustrates how the c o i n l ,  co in2 ,  and c o i n 3  variables reference the three 
objects after these statements execute. Notice that each object has its own -s ideup attrib- 
ute. Lines 14 through 16 display the values returned from each object's ge t -s ideup 
method. 

~ b v l - e  Fa 9-8 The e o i n l ,  coin2,  and c o i n 3  variables refererlce three Coin objects 
-. - 

A Coln object 

coinl -1 s i d e u p  ------r Heads 1 
A Coin object 

coin2 -1 -sideup - I Heads I 
A Coin object 

Then, the statements in lines 22 through 24 call each object's t o s s  method: 

coin3 - 

Figure 9-9 shows how these statements changed each object's - s ideup attribute in the 
program's sample run. 

-sideup - (Heads' 

u - 9  she objects after the t o s s  method 

A Coin object 

coinl - -sideup ------, 1 ~ ~ i l ~  1 

A Coin object 

coin2 - 
A Coin object 

-sideup -----+ 'Tails ' 

coin3 - -sideup ----+ *HeadsT 



A 9.3 Working with Instances 





Assessor and Martator Methods 
As mentioned earlier, it is a common practice to make all of a class's data attributes private 
and to provide public methods for accessing and changing those attributes. This ensures 
that the object owning those attributes is in control of all the changes being made to them. 

A method that returns a value from a class's attribute but does not change it is known as 
an accessor method. Accessor methods provide a safe way for code outside the class to 
retrieve the values of attributes, without exposing the attributes in a way that they could be 
changed by the code outside the method. In the Ce l lphone  class that you saw in Program 
9-12 (in the previous In the Spotlight section), the g e t  manuf a c t ,  g e t  model, and - - 
g e t  - r e t a i l  p r i c e  methods are accessor methods. - 
A method that stores a value in a data attribute or changes the value of a data attribute in some 
other way is known as a mutator method. Mutator methods can control the way that a class's 
data attributes are modified. When code outside the class needs to change the value of an object's 
data attribute, it typically calls a mutator and passes the new value as an argument. If necessary, 
the mutator can validate the value before it assigns it to the data attribute. In Program 9-12, the 
set - manuf a c t ,  set  - model, and set r e t a i l  p r i c e  methods are mutator methods. - - 

NOTE: Mutator methods are sometimes called "setters" and accessor methods are 
sometimes called "getters." 







p/ Checkpoint 

9.12 What is an instance attribute? 

9.13 A program creates 10 instances of the Coin  class. How many --sideup attributes 
exist in memory? 

9.14 What is an accessor method? What is a mutator method? 

When designing a class, it is often helpful to draw a UML diagram. UML stands for Unified 
Modeling Language. It provides a set of standard diagrams for graphically depicting object- 
oriented systems. Figure 9-30 shows the general layout of a UML diagram for a class. 
Notice that the diagram is a box that is divided into three sections. The top section is where 
you write the name of the class. The middle section holds a list of the class's data attrib- 
utes. The bottom section holds a list of the class's methods. 



9.4 Techniques for Designing Classes 359 

+Bgwe 9- IC  Ce~era l  Iayou: of a UUL dlseri).m for a class 

Class name goes here - 
Data attributes are listed here - 

Methods are listed here - 
Following this layout, Figure 9-11 and 9-12 show UML diagrams for the Coin class and 
the Ce l lPhone  class that you saw previously in this chapter. Notice that we did not show 
the s e l f  parameter in any of the methods, since it is understood that the s e l f  parameter 
is required. 

Figure 9-1 ?s, UML diagram for the Coin class 

Coin 

sideup 

init--( ) 
toss( ) 
get-sideup( ) 

Figure 9-32 UML diagram for the Ce l lphone  class 

CellPhone 

-- manufact 
-- model 
-- retail-price 

-- init--(manufact, model, price) 
set_manufact(manufact) 
set-model(model) 
set-retail-price(price) 
get_manufact() 
get-model() 
get-retail-price() 

Finding t he  Ciasses l m  a ProbEew 
When developing an object-oriented program, one of your first tasks is to identify the classes 
that you will need to create. Typically, your goal is to identify the different types of real-world 
objects that are present in the problem, and then create classes for those types of objects 
within your application. 

Over the years, software professionals have developed numerous technitues for finding the 
classes in a given problem. One simple and popular technique involves the following steps. 

1. Get a written description of the problem domain. 
2. Identify all the nouns (including pronouns and noun phrases) in the description. Each 

of these is a potential class. 
3. Refine the list to include only the classes that are relevant to the problem. 

Let's take a closer look at each of these steps. 



360 Chapter 9 Classes and Object-Oriented Programming 

Writing a Description of the Problem Domain 

The problem domain is the set of real-world objects, parties, and major events related to the 
problem. If you adequately understand the nature of the problem you are trying to solve, you 
can write a description of the problem domain yourself. If you do not thoroughly understand 
the nature of the problem, you should have an expert write the description for you. 

For example, suppose we are writing a program that the manager of Joe's Automotive Shop 
will use to print service quotes for customers. Here is a description that an expert, perhaps 
Joe himself, might have written: 

Joe's Automotive Shop services foreign cars and specializes in servicing cars made by 
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets 
the customer's name, address, and telephone number. The manager then determines the make, 
model, and year of the car, and gives the customer a service quote. The service quote shows 
the estimated parts charges, estimated labor charges, sales tax, and total estimated charges. 

The problem domain description should include any of the following: 

Pllysical objects such as vehicles, machines, or products 
* Any role played by a person, such as manager, employee, customer, teacher, student, etc. 

The results of a business event, such as a customer order, or in this case a service quote 
Recordkeeping items, such as customer histories and payroll records 

identify All of the Nouns 

The next step is to identify all of the nouns and noun phrases. (If the description contains 
pronouns, include them too.) Here's another look at the previous problem domain descrip- 
tion. This time the nouns and noun phrases appear in bold. 

Joe's Automotive Shop services foreign cars, and specializes in servicing cars made by 
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets 
the customer's name, address, and telephone number. The manager then determines the make, 
model, and year of the car, and gives the customer a service quote. The service quote shows 
the estimated parts charges, estimated labor charges, sales tax, and total estimated charges. 

Notice that some of the nouns are repeated. The following list shows all of the nouns with- 
out duplicating any of them. 

address 
BMW 
car 
cars 
customer 
estimated labor charges 
estimated parts charges 
foreign cars 
Joe's Automotive Shop 
make 
manager 
Mercedes 
model 
name 



9.4 Techniques for Designing Classes 361 

Porsche 
sales tax, 
service quote 
shop 
telephone number 
total estimated charges 
year 

Refining the List of Nouns 

The nouns that appear in the problem description are merely candidates to become classes. It 
might not be necessary to make classes for them all. The next step is to refine the list to include 
only the classes that are necessary to solve the particular problem at hand. We will look at the 
common reasons that a noun can be eliminated from the list of potential classes. 

1. Some of the nouns really mean the same thing. 

In this example, the following sets of nouns refer to the same thing: 

cars and foreign cars 
These all refer to the general concept of a car. 
Joe's Automotive Shop and shop 
Both of these refer to the company "Joe's Automotive Shop." 

We can settle on a single class for each of these. In this example we will arbitrarily eliminate 
foreign cars from the list, and use the word cars. Likewise we will eliminate Joe's Automotive 
Shop from the list and use the word shop. The updated list of potential classes is: 

address 

BMW 

car 

cars 

customer 

estimated labor charges Because cars and foreign cars mean the 

estimated parts charges same thing in this problem, we have 
eliminated foreign cars. Also, because 
Joe's Automotive Shop and shop mean 
the same thing, we have eliminated Joe's 

make Automotive Shop. 

manager 

Mercedes 

model 

name 

Porsche 

sales tax 

service quote 
(continued) 



362 Chapter 9 Classes and Object-Oriented Programming 

shop 

telephone number 

total estimated charges 

year 

2. Some nouns might represent items that we do not need to be concerned with in order 
to solve the problem. 

A quick review of the problem description reminds us of what our application should do: 
print a service quote. In this example we can eliminate two unnecessary classes from the list: 

* We can cross shop off the list because our application only needs to be concerned 
with individual service quotes. It doesn't need to work with or determine any com- 
pany-wide information. If the problem description asked us to keep a total of all the 
service quotes, then it would make sense to have a class for the shop. 
We will not need a class for the manager because the problem statement does not direct 
us to process any information about the manager. If there were multiple shop man- 
agers, and the problem description had asked us to record which manager generated 
each service quote, then it would make sense to have a class for the manager. 

The updated list of potential classes at this point is: 

address 

BMW 

car 

cars 

customer 

estimated labor charges 

estimated parts charges 

keig:: cars 

kc': 
make 

v 
Mercedes 

model 

name 

Porsche 

sales tax 

service quote 

+ 
telephone number 

total estimated charges 

year 

Our problem description does not direct us to 
process any information about the shop, or 
any information about the manager, so we 
have eliminated those from the list. 



9.4 Techniques for Designing Classes 363 

3. Some of the nouns might represent objects, not classes. 

We can eliminate Mercedes, Porsche, and BMW as classes because, in this example, they 
all represent specific cars, and can be considered instances of a cars class. Also, we can elim- 
inate the word car from the list. In the description it refers to a specific car brought to the 
shop by a customer. Therefore, it would also represent an instance of a cars class. At this 
point the updated list of potential classes is: 

- - -  - -- 

address 
8M%V 
€33 

cars 
customer 
estimated labor charges 
estimated parts charges 

We have eliminated Mercedes, Porsche, BMW, 
kc ' s  >=- and car because they are all instances of a cars - class. That means that these nouns identify 

objects, not classes. 
make 
?&eEe& 

model 
name 
!2emdle 

sales tax 
service quote * 
telephone number 
total estimated charges 
year 

4. Some of the nouns might represent simple values that can be assigned to a variable 
and do not require a class. 

9 

Remember, a class contains data attributes and methods. Data attributes are related items 
that are stored in an object of the class, and define the object's state. Methods are actions 
or behaviors that can be performed by an object of the class. If a noun represents a type of 
item that would not have any identifiable data attributes or methods, then it can probably 
be eliminated from the list. To help determine whether a noun represents an item that 
would have data attributes and methods, ask the following questions about it: 

* Would you use a group of related values to represent the item's state? 
* Are there any obvious actions to be performed by the item? 



364 Chapter 9 Classes and Object-Oriented Programming 

If the answers to both of these questions are no, then the noun probably represents a 
value that can be stored in a simple variable. If we apply this test to each of the nouns 
that remain in our list, we can conclude that the following are probably not classes: 
address, estimated labor charges, estimated parts charges, make, model, name, sales tax, 
telephone number, total estimated charges and year. These are all simple string or 
numeric values that can be stored in variables. Here is the updated list of potential 
classes: 

€a% 

cars 

customer 

We have eliminated address, estimated 
labor charges, estimated parts charges, 
make, model, name, sales tax, telephone 
number, total estimated charges, and 

@e's A:- year as classes because they represent 
& simple values that can be stored in 

v variables. 

service quote 

As you can see from the list, we have eliminated everything except cars, customer, and 
service quote. This means that in our application, we will need classes to represent cars, 
customers, and service quotes. Ultimately, we will write a Car  class, a Customer class, 
and a S e r v i c e Q u o t e  class. 

ra5 :~e~".syfng a C8~3ss's R e ~ p ~ ~ ~ i b i I B g f e ~  

Once the classes have been identified, the next task 1s to identify each class's responsiblh- 
tles. A class's responszbzlztzes are 

the thlngs that the class is res~onslble for knowlng 
the actions that the class IS responsible for doing 



9.4 Techniques for Designing Classes 365 

When you have identified the things that a class is responsible for knowing, then you have 
identified the class's data attributes. Likewise, when you have identified the actions that a 
class is responsible for doing, you have identified its methods. 

It is often helpful to ask the questions "In the context of this problem, what must the 
class know? What must the class do?" The first place to look for the answers is in the 
description of the problem domain. Many of the things that a class must know and do 
will be mentioned. Some class responsibilities, however, might not be directly mentioned 
in the problem domain, so further consideration is often required. Let's apply this 
inethodology to the classes we previously identified from our problem domain. 

The Customer Class 

In the context of our problem domain, what must the customer class know? The description 
directly mentions the following items, which are all data attributes of a customer: 

0 the customer's name 
0 the customer's address 
0 the customer's telephone nu-mber 

These are all values that can be represented as strings and stored as data attributes. The 
cus tomer  class can potentially know many other things. One mistake that can be made at 
this point is to identify too many things that an object is responsible for knowing. In some 
applications, a Customer class might know the customer's email address. This particular 
problem domain does not mention that the customer's email address is used for any purpose, 
so we should not include it as a responsibility. 

Now let's identify the class's methods. In the context of our problem domain, what must 
the cus tomer  class do? The only obvious actions are: 

initialize an object of the cus tomer  class 
set and return the customer's name 
set and return the customer's address 
set and return the customer's telephone number 

From this list we can see that the cus tomer  class will have an in i t - -  method, as well 
as accessors and mutators for the data attributes. Figure 9-13Xows a UML diagram for 
the cus tomer  class. 

Figure 9-1 3 UML diagram for the Customer class 

I Customer I 
-- name 
-- address 
-- phone 



366 Chapter 9 Classes and Object-Oriented Programming 

The car CIass 

In the context of our problem domain, what must an object of the Car class know? The 
following items are all data attributes of a car, and are mentioned in the problem 
domain: 

the car's make 
the car's model 
the car's year 

Now let's identify the class's methods. In the context of our problem domain, what must 
the car class do? Once again, the only obvious actions are the standard set of methods that 
we will find in most classes (an --init -- method, accessors, and mutators). Specifically, 
the actions are: 

initialize an object of the Car class 
set and get the car's make 
set and get the car's model 

0 set and get the car's year 

Figure 9-14 shows a UML diagram for the Car class at this point. 

Figuse 9-14 h)@L diagram for the Car class 

Car 

-- make 
-- model 
-- year 

-- init--( ) 
set-make(make) 
set-model(make) 
set_year(y) 
get-make( ) 
get-model( ) 

) 

The ServiceQuote Class 

In the context of our problem domain, what must an object of the ServiceQuote class 
ltnow? The problem domain mentions the following items: 

the estimated parts charges 
the estimated labor charges 
the sales tax 

0 the total estimated charges 

The methods that we will need for this class are an --init -- method and the accessors 
and mutators for the estimated parts charges and estimated labor charges attributes. In 
addition, the class will need methods that calculate and return the sales tax and the total 
estimated charges. Figure 9-15 shows a UML diagram for the ServiceQuote class. 



Review Questions 367 

Figure 8-15 UML diaqram for the  ServiceQuote class 

ServiceQuote 

parts-charges 
labor-charges 

You should look at the process that we have discussed in this section merely as a start- 
ing point. It's important to realize that designing an object-oriented application is an iter- 
ative process. It may talte you several attempts to identify all of the classes that you will 
need and determine all of their responsibilities. As the design process unfolds, you will 
gain a deeper understanding of the problem, and consequently you will see ways to 
improve the design. 

heckpoint 

9.15 The typical UML diagram for a class has three sections. What appears in these 
three sections? 

9.16 What is a problem domain? 

9.17 When designing an object-oriented application, who should write a description of 
the problem domain? 

9.18 How do you identify the potential classes in a problem domain description? 

9.19 What are a class's responsibilities? 

9.20 What two questions should you ask to determine a class's responsibilities? 

9.21. Will all of a classes actions always be directly mentioned in the problem domain 
description? 













1 10.1 Introduction to Inheritance / 10.2 Polymorphism 

CONCEPT: Inheritance allows a new class to extend an existing class. The new class 
inherits the members of the class it extends. 

Generailzation and Spectaiizal3on 
In the real world, you can find many objects that are specialized versions of other more 
general objects. For example, the term "insect" describes a general type of creature with 
various characteristics. Because grasshoppers and bumblebees are insects, they have all the 
general characteristics of an insect. In addition, they have special characteristics of their 
own. For example, the grasshopper has its jumping ability, and the bumblebee has its 
stinger. Grasshoppers and bumblebees are specialized versions of an insect. This is illustrated 
in Figure 10-1. 



374 Chapter 10 Inheritance 

Shaw-e "o-* Buvb lebees and grasshsapers are specialized versions of a n  insect 

All insects have 
certain characteristics. 

In addition to the common In addition to the common 
insect characteristics, the insect characteristics, the 

bumblebee has its own unique grasshopper has its own unique 
characteristics such as the characteristics such as the 

ability to sting. ability to jump. 

When one object is a specialized version of another object, there is an "is a" relationship 
between them. For example, a grasshopper is an insect. Here are a few other examples of 
the "is a" relationship: 

A poodle is a dog. 
A car is a vehicle. 

* A flower is a plant. 
* A rectangle is a shape. 

A football player is an athlete. 

When an "is a" relationship exists between objects, it means that the specialized object has 
all of the characteristics of the general object, plus additional characteristics that make it 
special. In object-oriented programming, inheritance is used to create an "is a" relationship 
among classes. This allows you to extend the capabilities of a class by creating another class 
that is a specialized version of it. 

Inheritance involves a superclass and a subclass. The superclass is the general class and the 
subclass is the specialized class. You can think of the subclass as an extended version of the 
superclass. The subclass inherits attributes and methods from the superclass without any of 
them having to be rewritten. Furthermore, new attributes and methods may be added to the 
subclass, and that is what makes it a specialized version of the superclass. 

/"", 
-<4 

class and subclass. 

Let's look at an example of how inheritance can be used. Suppose we are developing a 
program that a car dealership can use to manage its inventory of used cars. The dealer- 
ship's inventory includes three types of automobiles: cars, pickup trucks, and sport-utility 



10.1 Introduction to inheritance 375 

vehicles (SUVs). Regardless of the type, the dealership keeps the following data about 
each automobile: 

* Make 
* Year model 

Mileage 
Price 

Each type of vehicle that is kept in inventory has these general characteristics, plus its own 
specialized characteristics. For cars, the dealership keeps the following additional data: 

Number of doors (2 or 4) 

For pickup trucks, the dealership keeps the following additional data: 

-Drive type (two-wheel drive or four-wheel drive) 

And for SWs,  the dealership keeps the following additional data: 

* Passenger capacity 

In designing this program, one approach would be to write the following three classes: 

A Car class with data attributes for the make, year model, mileage, price, and the 
number of doors. 
A Truck class with data attributes for the make, year model, mileage, price, and the 
drive type. 

0 An suv class with data attributes for the make, year model, mileage, price, and the 
passenger capacity. 

This would be an inefficient approach, however, because all three of the classes have a large 
number of common data attributes. As a result, the classes would contain a lot of duplicated 
code. In addition, if we discover later that we need to add more common attributes, we 
would have to modify all three classes. 

A better approach would be to write an Automobile superclass to hold all the general 
data about an automobile and then write subclasses for each specific type of automobile. 
Program 10-1 shows the Automobile class's code, which appears in a module named 
vehicles. 

Program 10-1 (Lines 1 through 44 of vehic1es.p~) 

1 ' #  The Automobile class holds general data 
2 # about an automobile in inventory. 

5 

4 class Automobile: 

5 # The --init--method accepts arguments for the 

6 # make, model, mileage, and price. It initializes 
7 # the data attributes with these values. 

8 

9 def --init--(self, make, model, mileage, price) : 

10  self .--make = make 
(program continues) 



376 Chapter 10 Inheritance 

(continued) 

I1 self .--model = model 
12 self .--mileage = mileage 

13 self .--price = price 

14 

15 # The following methods are mutators for the 
16 # class's data attributes. 
1 7  

18 def set-make(self, make): 

19 self .--make = make 

2 0 

2 1 def set-model(self, model): 

2 2 self .--model = model 

2 3 
2 4 def set-mileage(self, mileage): 

2 5 self .--mileage = mileage 

2 6 

2 7 def set-price(self, price): 

2 8 self .--price = price 

2 9 

3 0 # The following methods are the accessors 

3 1 # for the class's data attributes. 
32 

3 3 def get-make(se1f): 

3 4 return self .--make 

35 

3 6 def get-model(se1f): 

3 7 return self.--model 

3 8 

3 9 def get-mileage(se1f): 

4 0 return self.--mileage 

4 1 

4 2 def get-price(se1f): 

4 3 return self .--price 

4 4 

The Automobile class's -- i n i t  -- method accepts arguments for the vehicle's make, 
model, mileage, and price. It uses those values to initialize the following data attributes: 

* make -- 
* model -- 
* -- m i l e a g e  
* -- p r i c e  

(Recall from Chapter 9 that a data attribute becomes hidden when its name begins with 
two underscores.) The methods that appear in lines 18 through 28 are mutators for each of 
the data attributes, and the methods in lines 33 through 43 are the accessors. 



10.1 Introduction to Inheritance 377 

The Automobile class is a complete class that we can create objects from. If we wish, we 
can write a program that imports the v e h i c l e  module and creates instances of the 
Automobile class. However, the Automobile class holds only general data about an 
automobile. It does not hold any of the specific pieces of data that the dealership wants to 
keep about cars, pickup trucks, and SUVs. To hold data about those specific types of auto- 
mobiles we will write subclasses that inherit from the Automobile class. Program 10-2 
shows the code for the Car class, which is also in the v e h i c l e s  module. 

Program 10-2 (Lines 45 through 72 of vehic1es.p~) 

45 # The Car class represents a car. It is a subclass 

46 # of the Automobile class. 
4 7 

48 class Car(Automobi1e): 

4 9 # The --init-- method accepts arguments for the 

5 0 # car's make, model, mileage, price, and doors. 
5 1 

52 def -- init--(self, make, model, mileage, price, doors): 

5 3 # Call the superclass's --init-- method and pass 

5 4 # the required arguments. Note that we also have 

5 5 # to pass self as an argument. 
5 6 Automobile.--init--(self, make, model, mileage, price) 

5 7 

5 8 # Initialize the --doors attribute. 

5 9 self .--doors = doors 

6 3 # The set-doors method is the mutator for the 
6 2 # --doors attribute. 

6 3 

6 4 def set-doors(self, doors): 

5 5 self .--doors = doors 

6 6 

5 7 # The get-doors method is the accessor for the 
6 8 # --doors attribute. 

6 9 

7 0 def get-doors(se1f): 

7 1 return self .--doors 

7 2 

Take a closer look at the first line of the class declaration, in line 488 

class Car(Automobi1e): 

This line indicates that we are defining a class named Car, and it inherits from the 
Automobile class. The Car class is the subclass and the Automobile class is the superclass. 
If we want to express the relationship between the C a r  class and the Automobile class, we 
can say that a C a r  is an Automobile. Because the C a r  class extends the Automobile class, 
it inherits all of the methods and data attributes of the Automobile class. 



378 Chapter 10 Inheritance 

Look at the header for the -- i n i t  -- method in line 52: 

def -- init--(self, make, model, mileage, price, doors): 

Notice that in addition to the required s e l f  parameter, the method has parameters named 
make, model, mi leage ,  p r i c e ,  and doors .  This makes sense because a Car object will 
have data attributes for the car's make, model, mileage, price, and number of doors. Some 
of these attributes are created by the Automobile class, however, so we need to call the 
Automobile class's -- i n i t  method and pass those values to it. That happens in line 56: -- 

Automobile.--init--(self, make, model, mileage, price) 

This statement calls the Automobile class's -- i n i t  -- method. Notice that the state- 
ment passes the s e l f  variable, as well as the make, model, mi leage ,  and p r i c e  vari- 
ables as arguments. When that method executes, it initializes the -- make, -- model, 

mi leage ,  and p r i c e  data attributes. Then, in line 59, the d o o r s  attribute is ini- -- -- -- 
tialized with the value passed into the d o o r s  parameter: 

self. doors = doors -- 

The set d o o r s  method, in lines 64 through 65, is the mutator for the d o o r s  attribute, 
and the get - d o o r s  method, in lines 70 through 71 is the accessor for the' d o o r s  attrib- -- 
ute. Before going any further, let's demonstrate the Car class, as shown in Program 10-3. 

Program 10-3 (car-demo.py) 

# This program demonstrates the Car class. 

import vehicles 

def main( ) : 

# Create an object from the Car class. , 
# The car is a 2007 Audi with 12,500 miles, priced 
# at $21,500.00, and has 4 doors. 

used-car = vehicles.Car('Audi', 2007, 12500, 21500.00, 4) 

# Display the car's data. 
print 'Make:', used-car.get-make() 

print 'Model:', used-car.get-model() 

print 'Mileage:', used-car.get-mileage() 

print 'Price:', used-car.get-price() 

print 'Number of doors:', used-car.get-doors() 

# Call the main function. 
main ( ) 

- 

Yake: A1 

Yodel: : 

Program Output 

I 

I 



10.1 Introduction to Inheritance 379 

tlileage: 12500 

price: 21500.0 

Number of doors: 4 

Line 3 imports the v e h i c l e s  module, which contains the class definitions for the 
Automobile and C a r  classes. Line 9 creates an instance of the Car class, passing ~ A u d i  ' 

as the car's make, 2007 as the car's model, 12500 as the mileage, 21500.00 as the car's price, 
and 4 as the number of doors. The resulting object is assigned to the used - car variable. 

The p r i n t  statement in lines 12 through 15 calls the object's g e t  - make, g e t  model, - 
g e t  mi leage ,  and g e t  p r i c e  methods. Even though the Car  class does not have any 
of these methods, it inberits them from the Automobile class. Line 16 calls the 
g e t .  - d o o r s  method, which is defined in the C a r  class. 

Now let's look at the Truck class, which also inherits from the Automobile class. The code 
for the Truck class, which is also in the v e h i c l e s  module, is shown in Program 10-4. 

(Lines 73 through 1 00 of vehic1es.p~) 

73 # The Truck class represents a pickup truck. It is a 

74 # subclass of the Automobile class. 
7 5 

76 class Truck(Automobi1e): 

7 7 # The --init-- method accepts arguments for the 

7 8 # Truck's make, model, mileage, price, and drive type. 
7 9 

8 0 def -- init--(self, make, model, mileage, price, drive-type): 

8 1 # Call the superclass's --init-- method and pass 

8 2 # the required arguments. Note that we also have 
8 3 # to pass self as an argument. 
8 4 Automobile.--init--(self, make, model, mileage, price) 

8 5 

8 6 # Initialize the --drive-type attribute. 

8 7 self.--drive-type = drive-type 

8 8 

8 9 # The set-drive-type method is the mutator for the 
9 5 # --drive-type attribute. 

9 1 

9 2 def set-drive-type(self, drive-type): 

9 3 self .--drive = drive-type 

9 4 

9 5 # The get-drive-type method is the accessor for the 
9 6 # --drive-type attribute. 

97 

9 8 def get-drive-type(se1f): 

9 9 return self.--drive-type 
100 



380 Chapter 10 Inheritance 

The Truck class's i n i t  method begins in line 80. Notice that it takes arguments for 
the truck's malte, m:7el, mileage, price, and drive type. Just as the Car class did, the Truck 
class calls the Automobile class's -- i n i t  -- method (in line 84) passing the make, 
model, mileage, and price as arguments. Line 87 creates the -- d r i v e  - t y p e  attribute, ini- 
tializing it to the value of the dr ive- type parameter. 

The set d r i v e  t y p e  method in lines 92 through 93 is the mutator for the d r i v e  t y p e  
attribute,and the-get - d r i v e  - t y p e  method in lines 98 through 99 is theAaTcessor for the 
attribute. 

Now let's look at the suv class, which also inherits from the Automobile class. The code 
for the suv class, which is also in the v e h i c l e s  module, is shown in Program 10-5. 

(Lines 101 through 128 of vehic1es.p~) 

101 # The SUV class represents a sport utility vehicle. It 
102 # is a subclass of the Automobile class. 
103 

104 class SUV(Automobi1e): 

105 # The --init-- method accepts arguments for the 

106 # SUV's make, model, mileage, price, and passenger 

107 # capacity. 
108 

109 def --init--(self, make, model, mileage, price, pass-cap): 

110 # Call the superclass's --init-- method and pass 

11 1 # the required arguments. Note that we also have 
112 # to pass self as an argument. 

113 Automobile.--init--(self, make, model, mileage, price) 

114 

115 # Initialize the --pass - cap attribute. 
116 self.--pass-cap = pass-cap 

117 

118 # The set-pass-cap method is the mutator for the 
119 # --pass-cap attribute. 

120 

121 def set-pass-cap(self, pass-cap): 

122 self.--pass - cap = pass-cap 

123 
124 # The get-pass-cap method is the accessor for the 
125 # --pass-cap attribute. 

126 

127 def get-pass-cap(se1f): 

128 return self.--pass-cap 

The suv class's -- i n i t  -- method begins in line 109. It takes arguments for the vehicle's 
make, model, mileage, price, and passenger capacity. Just as the Car  and Truck classes did, 
the suv class calls the Automobile class's - - in i t  -- method (in line 113) passing the 



10.1 Introduction to Inheritance 381 

make, model, mileage, and price as arguments. Line 116 creates the pass cap attrib- -- - 
ute, initiaiizing it to the value of the pass-cap parameter. 

The set pass cap method in lines 121 through 122 is the mutator for the pass-cap 
attributeFand th7: get - pass - cap method in lines 127 through 128 is the a z s s o r  for the 
attribute. 

Program 10-6 demonstrates each of the classes we have discussed so far. It creates a Car 
object, a Truck object, and an suv object. 

1 # This program creates a Car object, a Truck object, 
2 # and an SUV object. 
3 

4 import vehicles 

5 

6 def main( ) : 

# Create a Car object for a used 2001 BMW 
# with 70,000 miles, priced at $15,000, with 
# 4 doors. 
car = vehicles.Car('BMW', 2001, 70000, 15000.0, 4) 

# Create a Truck object for a used 2002 

# Toyota pickup with 40,000 miles, priced 
# at $12,000, with 4-wheel drive. 
truck = vehicles.Truck('Toyota', 2002, 40000, 12000.0, '4WD') 

# Create an SUV object for a used 2000 
# Volvo with 30,000 miles, priced 
# at $18,500, with 5 passenger capacity. 
suv = vehicles.SUV('Volvo', 2000, 30000, 18500.0, 5) 

print 'USED CAR INVENTORY' 
print '-------------------' ------------------- 

# Display the car's data. 
print 'The following car is in inventory:' 

print 'Make:', car.get-make() 

print 'Model:', car.get-model() 

2 9 print 'Mileage:', car-get - mileage() 

' 30 print 'Price:', car-get - price() 

3 3. print 'Number of doors:', car.get-doors() 
3 2 print 

3 3 

3 4 # Display the truck's data. 
- 35 print 'The following pickup truck is in inventory.' 

(program continues) 



382 Chapter 10 Inheritance 

(continued) 

3 6 print 'Make:', truck-get-make() 

3 7 print 'Model:', truck-get-model() 

3 8 print 'Mileage:', truck.get-mileage() 

3 9 print 'Price:', truck-get-price() 

4 0 print 'Drive type:', truck.get-drive-type() 

4 1 print 

4 2 

4 3 # Display the SUV's data. 
4 4 print 'The following SUV is in inventory.' 

4 5 print 'Make:', suv.get-make() 

4 6 print 'Model:', suv.get-model() 

47 print 'Mileage:', suv.get-mileage() 

4 8 print 'Price:', suv-get - price() 

4 9 print 'Passenger Capacity:', suv.get-pass-cap() 

5 0 

51 # Call the main function. 
52 main() 

JSED CAI INVEN' 

You show inheritance in a UML diagram by drawing a line with an open arrowhead from the 
subclass to the superclass. (The arrowhead points to the superclass.) Figure 10-2 is a UML 
diagram showing the relationship between the Automobile, C a r ,  Truck, and suv classes. 



10.1 Introduction to Inheritance 383 

~ ' v w e  ?Q-2 UML diagram shoi~~ing irlheritance - 
Automob~le 

model 
mileage 
price 

-- init--(make, model, 
mileage, price) 

set-make(make) 
set-model(mode1) 
set-mileage(mi1eage) 
set-price(price) 
get-make( ) 
get_model( ) 
get_mileage( ) 
get-price() 

-- init--(make, model, 
mileage, price, doors) 

set-doors(doors) 
get-doors() 

1 Truck I 

-- init--(make, model, 
mileage, price, drive-type) 

set-drive-type(drive-type) 
get-drive-type() 

I suv I 

-- init--(make, model, 
mileage, price, pass-cap) 

set-pass-cap(pass-cap) 
get-pass-cap0 









Checkpoint 
P" 

10.1 In this section we discussed superclasses and subclasses. Which is the general class 
and which is the specialized class? 

10.2 What does it mean to say there is an "is a" relationship between two objects? 

10.3 What does a subclass inherit from its superclass? 

10.4 Look at the following code, which is the first line of a class definition. What is the 
name of the superclass? What is the name of the subclass? 

class Canary(Bird): 



388 Chapter 10 Inheritance 

W b ~ 9 " y ~ c C " * " ~ - ~ 2  qv-3 F 

- C 0 N C E PT: Polymorphism allows subclasses to have methods with the same names 
as methods in their superclasses. it gives the ability for a program to call 
the correct method depending on the type of object that is used to call it. 

The term polymorphism refers to an object's ability to take different forms. It is a power- 
ful feature of object-oriented programming. In this section, we will look at two essential 
ingredients of polymorphic behavior: 

1. The ability to define a method in a superclass, and then define a method with the same 
name in a subclass. When a subclass method has the same name as a superclass 
method, it is often said that the subclass method overrides the superclass method. 

2. The ability to call the correct version of an overridden method, depending on the type 
of object that is used to call it. If a subclass object is used to call an overridden 
method, then the subclass's version of the method is the one that will execute. If a 
superclass object is used to call an overridden method, then the superclass's version of 
the method is the one that will execute. 

Actually, you've already seen method overriding at work. Each subclass that we have exam- 
ined in this chapter has a method named i n i t  that overrides the superclass's 
-- i n i t  method. When an instance of the subcLss is created, it is the subclass's -- i n i t  -- 
method tb; automatically gets called. 

Method overriding works for other class methods too. Perhaps the best way to describe 
polymorphism is to demonstrate it, so let's look at a simple example. Program 10-9 shows 
the code for a class named Mammal, which is in a module named an imal s .  

(Lines 1 through 22 of anima1s.p~) 

1 # The Mammal class represents a generic mammal. 
2 

3 class Mammal: 
4 

5 # The -- init-- method accepts an argument for 
6 # the mammal ' s species. 
7 

8 def -- init--(self, species) : 

9 self .--species = species 
L O  

11 # The show-species method displays a message 
I2 # indicating the mammal's species. 
13 

14 def show-species(se1f): 
15 print 'I am a', self .--species 

16 

17 # The make-sound method is the mammal's 

18 # way of making a generic sound. 



10.2 Polymorphism 389 

def make-sound(se1f): 
print ' Grrrrr ' 

The Mammal  class has three methods: i n i t - ,  show- species and make-sound. Here 
is an example of code that creates an instance of the class and calls the uses these methods: 

import animals 
mammal = animals.Mammal('regu1ar mammal') 
mammal.show-species() 
mammal.make-sound() 

This code will display the following: 

I am a regular mammal 
Grrrrr 

The next part of Program 10-9 shows the ~ o g  class. The ~ o g  class, which is also in the 
a n i m a l s  module, is a subclass of the Mammal class. 

Program 10-9 (Lines 23 through 38 of anirna1s.p~) 

23 # The Dog class is a subclass of the Mammal class. 

2 4 

25 class Dog(Mamma1) : 
2 6 

2 7 # The --init-- method calls the superclass's 
2 8 # --init-- method passing 'Dog' as the species. 
2 9 

3 0 def --init--( self ) : 
3 1 Mammal.-init--(self, 'Dog') 

3 2 

3 3 # The make-sound method overrides the superclass's 
3 4 # make-sound method. 
35 

3 6 def make-sound(se1f): 
3 7 print 'Woof ! Woof ! ' 

3 8 

Even though the Dog class inherits the -- i n i t  -- and make - sound methods that are in 
the Mammal class, those methods are not adequate for the ~ o g  class. So, the ~ o g  class has 
its own - - in i t  -- and make - sound methods, which perform actions that are more 
appropriate for a dog. We say that the in i t - -  and make sound methods in the ~ o g  
class override the - - in i t  -- and m a k e s o u n d  methods in t%e Mammal class. Here is an 
example of code that creates an instanceof the D O ~  class and calls the methods: 

import animals 
dog = animals. Dog( ) 



390 Chapter 10 Inheritance 

This code will display the following: 

I am a Dog 
Woof! Woof! 

When we use a ~ o g  object to call the show-species and make-sound methods, the ver- 
sions of these methods that are in the ~ o g  class are the ones that execute. Next, look at 
Program 10-10, which shows the C a t  class. The C a t  class, which is also in the a n i m a l s  
module, is another subclass of the Mammal class. 

(Lines 39 through 53 of anima1s.p~) 

39 # The Cat class is a subclass of the Mammal class. 

41 class Cat(Mamma1) : 

# The --init-- method calls the superclass's 
# --init-- method passing 'Cat' as the species. 

def --init--(self) : 
Mammal.--init--(self, 'Cat') 

# The make-sound method overrides the superclass's 
# make-sound method. 

The cat  class also overrides the Mammal class's - - i n i t  and make - sound methods. 
Here is an example of code that creates an instance o f  tbe C a t  class and calls these 
methods: 

import animals 
cat = animals.Dog( ) 
cat.show-species() 

cat.make-sound() 

This code will display the following: 

I am a Cat 

Meow 

When we use a C a t  object to call the show-species and make-sound methods, the 
versions of these methods that are in the C a t  class are the ones that execute. 



10.2 Polymorphism 391 

Polymorphism gives us a great deal of flexibility when designing programs. For example, 
look at the following function: 

def show-mammal-info(creature): 

creature.show~species() 

creature-make-sound() 

We can pass any object as an argument to this function, and as long as it has a 
show - s p e c i e s  method and a make - sound method, the function will call those methods. 
In essence, we can pass any object that "is a" Mammal (or a subclass of ~amrna l )  to the 
function. Program 10-10 demonstrates. 

Program 10-10 (polymorphism-demo.py) 

# This program demonstrates polymorphism. 

import animals 

def main ( ) : 

# Create a Mammal object, a Dog object, and 

# a Cat object. 
mammal = animals.Mammal('regu1ar animal') 

dog = animals .Dog( ) 

cat = animals .Cat( ) 

# Display information about each one. 
print 'Here are some animals and' 

print ' the sounds they make. ' 
print I--------------------------' 

show-mammal-info(mammal) 

print 

show-mammal-info(dog) 

print 

show-mammal-info(cat) 

# The show-mammal-info function accepts an object 

# as an argument, and calls its show-species 
# and make-sound methods. 

def show~mamrnal~info(creature): 

creature.show-species() 

creature-make-sound() 

# Call the main function. 
main ( ) 



392 Chapter 10 Inheritance 

But what happens if we pass an object that is not a Mammal, and not of a subclass of 
Mammal to the function? For example, what will happen when Program 10-11 runs? 

Program 10-1 1 (nlrong-type.py) 

def main() : 
# Pass a string to show-mammal-info. . . 
show-mammal-info('1 am a string') 

# The show-mammal-info function accepts an object 
# as an argument, and calls its show-species 
# and make-sound methods. 

def show-mammal-info(creature): 

creature.show-species() 
creature-make-sound() 

# Call the main function. 
main ( ) 

In line 3 we call the show - mammal-inf o function passing a string as an argument. When 
the interpreter attempts to execute line 10, however, an A t t r i b u t e E r r o r  exception will 
be raised because strings do not have a method named show - s p e c i e s .  

We can prevent this exception from occurring, by using the built-in function i s i n s t a n c e .  
You can use the i s i n s t a n c e  function to determine whether an object is an instance of a 
specific class, or a subclass of that class. Here is the general format of the function call: 

isinstance(object, ClassName) 

In the general format, o b j e c t  is a reference to an object and ClassName is the name of 
a class. If the object referenced by o b j e c t  is an instance of ClassName or is an instance 
of a subclass of ClassName, the function returns true. Otherwise it returns false. Program 
10-12 shows how we can use it in the show-mammal - i n f o  function. 



10.2 Polymorphism 393 

1 # This program demonstrates polymorphism. 

3 import animals 

5 def main( ) : 
# Create an Mammal object, a Dog object, and 

# a Cat object. 
mammal = animals.Mammal('regular animal') 

dog = animals. Dog ( ) 
cat = animals.Cat( ) 

# Display in£ ormation about each one. 
print 'Here axe some animals and' 

print 'the sounds they make.' 
print '--------------------------' 

show-mammal-info(mamma1) 

show-mammal-info(dog) 

show-mammal-info(cat) 

show-mammal-info('1 am a string') 

24 # The show-mammal-info function accepts an object 
25 # as an argument, and calls its show-species 
26 # and make-sound methods. 

28 def show-mammal-info(creature): 
if isinstance(creature, animals.Mamma1): 

creature.show-species() 

creature.make-sound() 

print ' That is not a Mammal! ' 

? sounds 
-------- 
2m a re( 



394 Chapter 10 Inheritance 

am a D 
oof! Wo 

log 
of! 

I am a Lac 

at is not a Mammal! 

In lines 16, 18, and 20 we call the show mammal i n f o  function, passing references to a 
Mammal object, a ~ o g  object, and a catobject .  1; line 22, however, we call the function 
and pass a string as an argument. Inside the show mammal-info function, the i f  state- - 
ment in line 29 calls the i s i n s t a n c e  function to determine whether the argument is an 
instance of Mammal (or a subclass). If it is not, an error message is displayed. 

heckpoint 
6.25 Look at the following class definitions: 

class Vegetable: 

def -- init--(self, vegtype) : 
self. vegtype = vegtype -- 

def message(se1f): 

print "I'm a vegetable. " 

class Potato(Vegetab1e): 
def --init--( self) : 

Vegetable.--init--(self, 'potato') 

def message(se1f): 
print "I 'm a potato. " 

Given these class definitions, what will the following statements display? 

. supercl 
. slave cl 

rhilrl rl 

ass 
c ass 
d. ,,ass 

- is the gc 











1 1 1.1 Introduction to Recursion 1 1.3 Examples of Recursive Algorithms / 1 1.2 Problem Solving with Recursion 

L. CONCEPT: A recursive function is a function that calls itself. 

You have seen instances of functions calling other functions. In a program, the main func- 
tion might call function A, which then might call function B. It's also possible for a func- 
tion to call itself. A function that calls itself is known as a recursive function. For example, 
look at the message function shown in Program 11-1. 

Program 1 1-1 (endless-recursion.py) 

# This program has a recursive function. 

def main( ) : 

message ( ) 

def message ( ) : 

print 'This is a recursive function. ' 
message( ) 

# Call the main function. 

main ( ) 



400 Chapter 11 Recursion 

The message function displays the string 'This is a recursive function' and then calls itself. 
Each time it calls itself, the cycle is repeated. Can you see a problem with the function? 
There's no way to stop the recursive calls. This function is like an infinite loop because there 
is no code to stop it from repeating. 

Like a loop, a recursive function must have some way to control the number of times it 
repeats. The code in Program 11-2 shows a modified version of the message function. In 
this program, the message function receives an argument that specifies the number of 
times the function should display the message. 

# This program has a recursive function. 

def main( ) : 

# By passing the argument 5 to the message 

# function we are telling it to display the 

# message five times. 
message(5) 

def message(times): 

if (times > 0): 
print 'This is a recursive function. ' 

message(times - 1) 

# Call the main function. 

main ( ) 

The message function in this program contains an i f  statement in line 10 that controls the 
repetition. As long as the times parameter is greater than zero, the message 'This is a recur- 
sive function' is displayed, and then the function calls itself again, but with a smaller argument. 



1 l .l Introduction to Recursion 402 

In line 7 the main function calls the message function passing the argument 5. The first 
time the function is called the i f  statement displays the message and then calls itself with 
4 as the argument. Figure 11-1 illustrates this. 

v c ~ a e e  11-1 First two calfs 8': the function 

I First call of the function / 
/ Value of times: 5 1 

The diagram shown in Figure 11-1 illustrates two separate calls of the message function. 
Each time the function is called, a new instance of the times parameter is created in mem- 
ory. The first time the function is called, the times parameter is set to 5. When the func- 
tion calls itself, a new instance of the times parameter is created, and the value 4 is passed 
into it. This cycle repeats until finally, zero is passed as an argument to the function. This 
is illustrated in Figure 11-2. 

F8gure 11-2 Six calls to the message function 

The function is first called 
from the main function. 

Second call of the function 
The second through sixth 
calls are recursive. Value of times: 4 

Third call of the function 

Fourth call of the function 

Value of times : 2 



402 Chapter 11 Recursion 

As you can see in the figure, the function is called six times. The first time it is called from 
the main function, and the other five times it calls itself. The number of times that a 
function calls itself is known as the depth of recursion. In this example, the depth of 
recursion is five. When the function reaches its sixth call, the times parameter is set 
to 0. At that point, the if statement's conditional expression is false, so the function 
returns. Control of the program returns from the sixth instance of the function to the 
point in the fifth instance directly after the recursive function call. This is illustrated in 
Figure 11-3. 

F ' 
- n ~ p ~ ~ 4  1 " -3Con t ro l  returns to :he point after the recursive function call 

Recursive function call def message (times) : 
if (times > 0) : 

L print 'This is a recursive function.' message(times - 1) 

I 
- 

Control returns here from the recursive call. 
There are no more statements to execute 
in this function. so the function returns. 

Because there are no more statements to be executed after the function call, the fifth 
instance of the function returns control of the program back to the fourth instance. This 
repeats until all instances of the function return. 

- CONCEPT: A problem can be solved with recursion if it can be broken down into 
smaller problems that are identical in structure to the overall problem. 

The code shown in Program 11-2 demonstrates the mechanics of a recursive function. 
Recursion can be a powerful tool for solving repetitive problems and is commonly studied 
in upper-level computer science courses. It may not yet be clear to you how to use recur- 
sion to solve a problem. 

First, note that recursion is never required to solve a problem. Any problem that can be 
solved recursively can also be solved with a loop. In fact, recursive algorithms are usually 
less efficient than iterative algorithms. This is because the process of calling a function 
requires several actions to be performed by the computer. These actions include allocating 
memory for parameters and local variables, and storing the address of the program loca- 
tion where control returns after the function terminates. These actions, which are some- 
times referred to as overhead, take place with each function call. Such overhead is not 
necessary with a loop. 

Some repetitive problems, however, are more easily solved with recursion than with 
a loop. Where a loop might result in faster execution time, the programmer might be 



11.2 Problem Solving with Recursion 403 

able to design a recursive algorithm faster. In general, a recursive function works as 
follows: 

If the problem can be solved now, without recursion, then the function solves it and 
returns 
If the problem cannot be solved now, then the function reduces it to a smaller but sim- 
ilar problem and calls itself to solve the smaller problem 

In order to apply this approach, first, we identify at least one case in which the problem can 
be solved without recursion. This is known as the base case. Second, we determine a way 
to solve the problem in all other circumstances using recursion. This is called the recursive 
case. In the recursive case, we must always reduce the problem to a smaller version of the 
original problem. By reducing the problem with each recursive call, the base case will even- 
tually be reached and the recursion will stop. 

Using Recursion to Caliculate 
the Factorial of a Number 
Let's take an example from mathematics to examine an application of recursive functions. 
In mathematics, the notation n! represents the factorial of the number n. The factorial of a 
nonnegative number can be defined by the following rules: 

If n = 0 then n! = 1 
If n > 0 then n ! = 1 ~ 2 ~ 3 ~  . . .  x n  

Let's replace the notation n! with factorial(n), which looks a bit more like computer code, 
and rewrite these rules as follows: 

If n = 0 then factorial(n) = 1 
If n > 0 then factorial(n) = 1 x 2 x 3 x . . . x n 

These rules state that when n is 0, its factorial is 1. When n is greater than 0, its factorial 
is the ~ roduc t  of all the positive integers from 1 up to n. For instance, factorial(6) is calcu- 
lated as 1 x 2 x 3 x 4 x 5 x 6. 

When designing a recursive algorithm to calculate the factorial of any number, first we iden- 
tify the base case, which is the part of the calculation that we can solve without recursion. 
That is the case where n is equal to 0 as follows: 

If n = 0 then factorial(n) = 1 

This tells how to solve the problem when n is equal to 0, but what do we do when n is 
greater than O ?  That is the recursive case, or the part of the problem that we use recursion 
to solve. This is how we express it: 3 

If n > 0 then factorial(n) = n x factorial(n - 1) 

This states that if n is greater than 0, the factorial of n is n times the factorial of n - 1. 
Notice how the recursive call works on a reduced version of the problem, n - 1. So, our 
recursive rule for calculating the factorial of a number might look like this: 

If n = 0 then factorial(n) = 1 
If n > 0 then factorial(n) = n x factorial(n - 1) 



404 Chapter 1 1 Recursion 

The code in Program 11-3 shows how we might design a factorial function in a 
program. 

# This program uses recursion to calculate 
# the factorial of a number. 

def main( ) : 
# Get a number from the user. 
number = input('Enter a nonnegative integer: ' )  

# Get the factorial of the number. 

fact = factorial(number) 

# Display the factorial. 
print 'The factorial of ' , number, ' is ' , fact 

# The factorial function uses recursion to 
# calculate the factorial of its argument, 
# which is assumed to be nonnegative. 
def factorial(num): 

if num == 0: 

return 1 
else: 

return num * factorial(num - 1) 

# Call the main function. 
main ( ) 

Program Output (with input shown in bold) 

Enter a nonnegative integer: 4 [Enter] 
The factorial of 4 is 24 

In the sample run of the program, the f a c t o r i a l  function is called with the argument 4 
passed to num. Because num is not equal to 0, the i f  statement's else clause executes the 
following statement: 

return num * factorial(num - 1) 
Although this is a r e t u r n  statement, it does not immediately return. Before the return 
value can be determined, the value of f a c t o r i a l  (num - 1 ) must be determined. The 
f a c t o r i a l  function is called recursively until the fifth call, in which the num parameter 
will be set to zero. Figure 11-4 illustrates the value of num and the return value during each 
call of the function. 



1 1.2 Problem Solving with Recursion 405 

Figure 11-4 The value of nurn and the return value during each call of the function 

The function is first called 
from the main function. - 

I Value of num: 4 I 
I Return value: 24 I 

The second through fifth 
calls are recursive. 

Return value: 6 w 

Fourth call of the function 

Value of num: 1 

Return value: 1 i 
I Return value: 1 I 

The figure illustrates why a recursive algorithm must reduce the problem with each 
recursive call. Eventually, the recursion has to stop in order for a solution to be 
reached. 

If each recursive call works on a smaller version of the problem, the& the recursive calls 
work toward the base case. The base case does not require recursion, so it stops the chain 
of recursive calls. 

Usually, a problem is reduced by making the value of one or more parameters smaller with 
each recursive call. In our factorial function, the value of the parameter nurn gets closer 
to O with each recursive call. When the parameter reaches 0, the function returns a value 
without making another recursive call. 



406 Chapter 1 I Recursion 

Direct and indirect Recursfon 

The examples we have discussed so far show recursive functions or functions that directly 
call themselves. This is known as direct recursion. There is also the possibility of creat- 
ing indirect recursion in a program. This occurs when function A calls function B, which 
in turn calls function A. There can even be several functions involved in the recursion. 
For example, function A could call function B, which could call function C, which calls 
function A. 

Checkpoint 

11.1 It is said that a recursive algorithm has more overhead than an iterative algorithm. 
What does this mean? 

11.2 What is a base case? 

11.3 What is a recursive case? 

11.4 What causes a recursive algorithm to stop calling itself? 

11.5 What is direct recursion? What is indirect recursion? 

Examples of Recursive Algorithms 

- Summing a Range of LIst Elements wish Recursion 

In this example, we look at a function named r a n g e  - sum that uses recursion to sum a 
range of items in a list. The function takes the following arguments: a list that contains the 
range of elements to be summed, an integer specifying the index of the starting item in the 
range, and an integer specifying the index of the ending item in the range. Here is an exam- 
ple of how the function might be used: 

numbers= [l, 2, 3, 4, 5, 6 ,  7, 8, 9 1  

my-sum = range-sum(numbers, 3, 7 ) 

print my-sum 

The second statement in this code s~ecifies that the r a n u e  sum function should return the - - 
sum of the items at indexes 3 through 7 in the numbers list. The return value, which in 
this case would be 30, is assigned to the my - sum variable. Here is the definition of the 
range-sum function: 

def range-sum(num-list, start, end): 
if start > end: 

return 0 

else: 

return num-list[start] + range-sum(num-list, start + 1, end) 

This function's base case is when the s t a r t  parameter is greater than the end parameter. 
If this is true, the function returns the value 0. Otherwise, the function executes the follow- 
ing statement: 

return num-listfstart] + range-sum(num-list, start + 1, end) 



11.3 Examples of Recursive Algorithms 407 

This statement returns the sum of num l i s t  [ s t a r t ]  plus the return value of a recursive - 
call. Notice that in the recursive call, the starting item in the range is s t a r t  + 1. In 
essence, this statement says "return the value of the first item in the range plus the sum of 
the rest of the items in the range." Program 11-4 demonstrates the function. 

Program 11 -4 

1 # This program demonstrates the range-sum function. 
2 

3 def main(): 

3 # Create a list of numbers. 

5 *numbers= [l, 2, 3, 4, 5, 6 ,  7, 8, 91 

6 

7 # Get the sum of the items at indexes 2 
8 # through 5. 
9 my - sum = range-sum(numbers, 2, 5) 

I 0 
I I # Display the sum. 

print 'The sum of items 2 through 5 is ' , my-sum 

# The range-sum function returns the sum of a specified 
# range of items in num-list. The start parameter 

# specifies the index of the starting item. The end 
# parameter specifies the index of the ending item. 
def range-sum(num-list, start, end): 

if start > end: 

return 0 

else : 

return num-list[start] + range-sum(num-list, start + 1, end) 

# Call the main function. 
main ( ) 

Program Output 

The sum of elements 2 through 5 is 18 

The Fibonacci Series 

Some mathematical problems are designed to be solved recursivel? One well-known 
example is the calculation of Fibonacci numbers. The Fibonacci numbers, named after 
the Italian mathematician Leonardo Fibonacci (born circa 1170), are the following 
sequence: 

Notice that after the second number, each number in the series is the sum of the two previ- 
ous numbers. The Fibonacci series can be defined as follows: 



408 Chapter 11 Recursion 

If n = 0 then Fib(%) = 0 
If n = 1 then Fib(n) = 1 
If n > 1 then Fib(n) = Fib(n - 1) + Fib(n - 2) 

A recursive function to calculate the nth number in the Fibonacci series is shown here: 

def fib(n): 
if n == 0: 

return 0 
elif n == 1: 

return 1 
else : 

return fib(n - 1) + fib(n - 2) 

Notice that this function actually has two base cases: when n is equal to 0, and when n is 
equal to 1. In either case, the function returns a value without making a recursive call. The 
code in Program 11-5 demonstrates this function by displaying the first 10 numbers in the 
Fibonacci series. 

Program 11 -5 (fib0nacci.p~) 

# This program uses recursion to print numbers 
# from the Fibonacci series. 

def main(): 

print 'The first 10 numbers in the' 
print 'Fibonacci series are:' 

for number in range(1, 11): 
print fib(number) 

# The fib function returns the nth number 
# in the Fibonacci series. 
def fib(n): 

if n == 0: 

return 0 
elif n == 1: 

return 1 
else : 

return fib(n - 1) + fib(n - ,  2) 

# Call the main function. 
main ( ) 

Program Output 

The first 10 numbers in the 
Fibonacci series are: 
0 



1 1.3 Examples of Recursive Algorithms 409 

Flqding the Gree$es.?- <q--"apr 

Our next example of recursion is the calculation of the greatest common divisor (GCD) of 
two numbers. The GCD of two positive integers x and y is determined as follows: 

If x can be evenly divided by y, then gcd(x, y) = y 
Otherwise, gcd(x, y) = gcd(y, remainder of x/y) 

This definition states that the GCD of x and y is y if x/y has no remainder. This is the base case. 
Otherwise, the answer is the GCD of y and the remainder of x/y. The code in Program 11-6 
shows a recursive method for calculating the GCD. 

1 # This program uses recursion to find the GCD 
2 # of two numbers. 

3 

4 def main(): 
c; - # Get two numbers. 
6 numl = input ( ' Enter an integer: ' ) 
-? num2 = input ( ' Enter another integer : ' ) 

8 

9 # Display the GCD. 
10 print 'The greatest common divisor of' 

11 print 'the two numbers is ' , gcd(num1, num2 ) 
12 

13 # The gcd function returns the greatest common 
14 # divisor of two numbers. 
15 def gcd(x, y): 

16 if x % y == 0: 

17 return y 

18 else: 

19 return gcd(x, x % y) 

2 0 

21 # Call the main function. 
22 main() 



410 Chapter 1 1 Recursion 

?r an i~ 
?r anotl 

greate:  
- -  1 ..- 

Program Output (with input shown in bold) 

Entt  

E n t t  

The 
t h e s e  izwu I 

The Towers of Hanoi 

The Towers of Hanoi is a mathematical game that is often used in computer science to illus- 
trate the power of recursion. The game uses three pegs and a set of discs with holes through 
their centers. The discs are stacked on one of the pegs as shown in Figure 11-5. 

Figure 11-5 The pegs and discs in the Tower of Hanoi game 

Notice that the discs are stacked on the leftmost peg, in order of size with the largest disc 
at the bottom. The game is based on a legend where a group of monks in a temple in Hanoi 
have a similar set of pegs with 64 discs. The job of the monks is to move the discs from the 
first peg to the third peg. The middle peg can be used as a temporary holder. Furthermore, 
the monks must follow these rules while moving the discs: 

Only one disk may be moved at a time 
A disk cannot be placed on top of a smaller disc 
All discs must be stored on a peg except while being moved 

According to the legend, when the monks have moved all of the discs from the first peg to 
the last peg, the world will come to an end.l 

To play the game, you must move all of the discs from the first peg to the third peg, 
following the same rules as the monks. Let's look at some example solutions to this game, 
for different numbers of discs. If you only have one disc, the solution to the game is 

' In case you're worried about the monks finishing their job and causing the world to end anytime soon, you can 
relax. If the monks move the discs at  a rate of 1 per second, it will take them approximately 585 billion years to 
move all 64 discs! 



11.3 Examples of Recursive Algorithms 411 

simple: move the disc from peg 1 to peg 3. If you have two discs, me solution requires 

three moves: 

Move disc 1 to peg 2 
Move disc 2 to peg 3 
Move disc 1 to peg 3 

Notice that this approach uses peg 2 as a temporary location. The complexity of the moves 
continues to increase as the number of discs increases. To move three discs requires the 
seven moves shown in Figure 11-6. 

Figure 11-6 Steps for moving three pegs 

Original setup. First move: Move disc 1 to peg 3. 

Second move: Move disc 2 to peg 2. Third move: Move disc 1 to peg 2. 

Fourth move: Move disc 3 to peg 3. Fifth move: Move disc 1 to peg 1. 

I I I +- +. I 
Sixth move: Move disc 2 to peg 3. Seventh move: Move disc 1 to peg 3. 

The following statement describes the overall solution to the problem: 

Move n discs from peg 1 to peg 3 using peg 2 as a temporary peg. 

The following summary describes a recursive algorithm that simulates the solution to the 
game. Notice that in this algorithm we use the variables A, B, and C to hold peg numbers. 



412 Chapter 11 Recursion 

TO moue n discs from peg A to  peg C, using peg B as a temporary peg, do  the following. 
If n > 0: 

Move n - 1 discs from peg A to  peg B, using peg C as a temporary peg. 
Move the remaining disc from peg A t o  peg C. 
Move n - 1 discs from peg B to  peg C, using peg A as a temporary peg. 

The base case for the algorithm is reached when there are no more discs to move. The fol- 
lowing code is for a function that implements this algorithm. Note that the function doe: 
not actually move anything, but displays instructions indicating all of the disc moves tc 
make. 

def move-discs(num, from-peg, topeg, temp-peg): 

if num > 0: 
move-discs(num - 1, from-peg, temp-peg, to-peg) 

print 'Move a disc from peg', from-peg, 'to peg', to-peg 
move-discs(num - 1, temp-peg, to-peg, from-peg) 

This function accepts arguments into the following parameters: 

num The number of discs to move. 
f rom-peg The peg to move the discs from. 

to-peg The peg to move the discs to. 

temp-peg The peg to use as a temporary peg. 

If num is greater than 0, then there are discs to move. The first recursive call is as follows: 

move-discs(num - 1, from-peg, temp-peg, to-peg) 

This statement is an instruction to move all but one disc from from-peg to temp-peg, 
using to-peg as a temporary peg. The next statement is as follows: 

print 'Move a disc from peg', from-peg, 'to peg', t o p e g  

This simply displays a message indicating that a disc should be moved from from - peg to 
to-peg. Next, another recursive call is executed as follows: 

move-discs(num - I, temppeg, to-peg, from-peg) 

This statement is an instruction to move all but one disc from temp-peg to to-peg, using 
from - peg as a temporary peg. The code in Program 11-7 demonstrates the function by 
displaying a solution for the Tower of Hanoi game. 

1 # This program simulates the Towers of Hanoi game. 
2 

3 def main(): 

4 # Set up some initial values. 

5 num-discs = 3 

6 frompeg = 1 

7 t o p e g  = 3 

8 temp-peg =2 



11.3 Examples of Recursive Algorithms 413 

# Play the game. 
move-discs(num-discs, from-peg, to-peg, temp-peg) 
print 'All the pegs are moved! ' 

# The moveDiscs function displays a disc move in 
# the Towers of Hanoi game. 
# The parameters are: 

# num : The number of discs to move. 
# from-peg: The peg to move from. 

# topeg: The peg to move to. 

# temp-peg: The temporary peg. 

def move-discs(num, from-peg, to-peg, temp-peg): 
if num > 0: 

move-discs(num - 1, from-peg, temp-peg, to-peg) 
print 'Move a disc from peg' , from-peg, 'to peg' , to-peg 
move-discs(num - 1, temp-peg, to-peg, from-peg) 

# Call the main function. 
main ( ) 

Recursion versus Looping 
Any algorithm that can be coded with recursion can also be coded with a loop. Both 
approaches achieve repetition, but which is best to use? 

There are several reasons not to use recursion. Recursive function calls are certainly less 
efficient than loops. Each time a function is called, the system incurs overhead that is not 
necessary with a loop. Also, in many cases, a solution using a loop is more evident than a 
recursive solution. In fact, the majority of repetitive programming tasksare best done with 
loops. 

Some problems, however, are more easily solved with recursion than with a loop. For exam- 
ple, the mathematical definition of the GCD formula is well suited to a recursive approach. 
If a recursive solution is evident for a particular problem, and the recursive algorithm does 
not slow system performance an intolerable amount, then recursion would be a good design 
choice. If a problem is more easily solved with a loop, however, you should take that 
approach. 













I i 12.1 Graphical User Interfaces 12.5 But ton  Widgets and Info Dialog Boxes 
12.2 Using the Tkinter Module 12.6 Getting Input with the Entry Widget 
12.3 Display Text with Label Widgets 12.7 Using Labels as Output Fields 
12.4 Organizing Widgets with Frames 12.8 Radio Buttons and Check Buttons / 

Graphical User Interfaces 

i- CONCEPT: A graphical user interface allows the user to interact with the operating 
system and other programs using graphical elements such as icons, buttons, 
and dialog boxes. 

A computer's user interface is the part of the computer that the user interacts with. One 
part of the user interface consists of hardware devices, such as the keyboard and the video 
display. Another part of the user interface lies in the way that the computer's operating sys- 
tem accepts commands from the user. For many years, the only way that the user could 
interact with an operating system was through a command line interface, such as the one 
shown in Figure 12-1. A command line interface typically displays a prompt, and the user 
types a command, which is then executed. 

Figure 12-1 A command line intedace 



420 Chapter 12 GUI Programming 

Many computer users, especially beginners, find command line interfaces difficult to use. 
This is because there are many commands to be learned, and each command has its own 
syntax, much like a programming statement. If a command isn't entered correctly, it will 
not work. 

In the 1980s, a new type of interface known as a graphical user interface came into use in 
commercial operating systems. A graphical user interface (GUI)  (pronounced "gooey"), 
allows the user to interact with the operating system and other programs through graphi- 
cal elements on the screen. GUIs also popularized the use of the mouse as an input device. 
Instead of requiring the user to type commands on the keyboard, G U S  allow the user to 
point at graphical elements and click the mouse button to activate them. 

Much of the interaction with a GUI is done through dialog boxes, which are small windows 
that display information and allow the user to perform actions. Figure 12-2 shows an 
example of a dialog box from the Windows operating system that allows the user to change 
the system's Internet settings. Instead of typing commands according to a specified syntax, 
the user interacts with graphical elements such as icons, buttons, and slider bars. 

Figure 12-2 A dialog box 

Select a mne to new or dlange s e m t y  setbngs. 
-- 

! internet L o 4  mkanet Trusted sites Restricted 
1 sites 

JLntemet 
Thls zone 1s far Internet websites, 
except #me I~sted 3n trusted and 
restilct-ed zones, 

Security level for this zone 

Mowed levels for tfds zone: Medium to High 1 1 
. -Pq,maprrate far most w&z~ks 

cantent 
-Uns~gned AciiveX conbols will not be downloaded 



12.2 Using the T k i n t e r  Module 421 

Sn a text-based environment, such as a command line interface, programs determine the 
order in which things happen. For example, consider a program that calculates the area of 
a rectangle. First, the program prompts the user to enter the rectangle's width. The user 
enters the width and then the program prompts the user to enter the rectangle's length. The 
user enters the length and then the program calculates the area. The user has no choice but 
to enter the data in the order that it is requested. 

In a GUI environment, however, the user determines the order in which things happen. For 
example, Figure 12-3 shows a GUS program (written in Python) that calculates the area of 
a rectangle. The user can enter the length and the width in any order he or she wishes. If a 
mistake is made, the user can erase the data that was entered and retype it. When the user 
is ready to calculate the area, he or she clicks the Calculate Area button and the program 
performs the calculation. Because GUS programs must respond to the actions of the user, it 
is said that they are event-driven. The user causes events to take place, such as the clicking 
of a button, and the program must respond to the events. 

Figure 12-3 A GUI program 

heckpoint 

12.1 What is a user interface? 

12.2 How does a command line interface work? 

12.3 When the user runs a program in a text-based environment, such as the command 
line, what determines the order in which things happen? 

12.4 What is an event-driven program? 

Usilmg the Tkinter Moaduie 

!- CONCEPT: In Python you can use the ~kinter module to create simple GUI programs. 

Python does not have GUI programming features built into the language itself. However, it 
comes with a module named T k i n t e r  that allows you to create simple CUI programs. The 
name "Tkinter" is short for "Tk interface." It is named this because it provides a way for 
Python programmers to use a GUI library named Tk. Many other programming languages 
use the Tk library as well. 



422 Chapter 12 GUI Programming 

A GUS program presents a window with various graphical widgets that the user can inter- 
act with or view. The T k i n t e r  module provides 15 widgets, which are described in Table 12-1. 
We won't cover all of the T k i n t e r  widgets in this chapter, but we will demonstrate how 
to create simple GUS programs that gather input and display data. 

-- 

Widget Description 

Bu t ton  A button that can cause an action to occur when it is clicked. 

Canvas A rectangular area that can be used to display graphics. 

Checkbut ton A button that may be in either the "on" or "off" position. 

E n t r y  An area in which the user may type a single line of input from the keyboard. 

Frame A container that can hold other widgets. 

Labe l  An area that displays one line of text or an image. 

L i s t b o x  A list from which the user may select an item 

Menu A list of menu choices that are displayed when the user clicks a 
Menubutton widget. 

Menubutton A menu that is displayed on the screen and may be clicked by the user 

Message Displays multiple lines of text. 

Rad iobu t ton  A widget that can be either selected or deselected. Radiobuttons usually 
appear in groups and allow the user to select one of several options. 

S c a l e  A widget that allows the user to select a value by moving a slider along a 
track. 

S c r o l l b a r  Can be used with some other types of widgets to provide scrolling ability. 

T e x t  A widget that allows the user to enter multiple lines of text input. 

T o p l e v e l  A container, like a Frame, but displayed in its own window. 

The simplest GUI program that we can demonstrate is one that displays an empty window. 
Program 12-1 shows how we can do this using the T k i n t e r  module. When the program 
runs, the window shown in Figure 12-4 is displayed. To exit the program, simply click the 
standard Windows close button (@) in the upper right corner of the window. 

NOTE: Programs that use T k i n t e r  do not always run reliably under IDLE. This is 
because IDLE itself uses T k i n t e r .  You can always use IDLE'S editor to write GUI 
programs, but for the best results, run them from your operating system's command 
prompt. 

1 # This program displays an empty window. 
2 



12.2 Using the Tkinter Module 423 

3 import Tkinter 

5 def main( ) : 

6 # Create the main window widget. 
7 main-window = Tkinter.Tk() 

8 

9 # Enter the Tkinter main loop. 
10 Tkinter.mainloop() 

i l 

12 # Call the main function. 

Figure 12-4 Window displayed by Program 1 2-1 

Line 3 imports the T k i n t e r  module. Inside the main function, line 7 creates an instance 
of the T k i n t e r  module's Tk class, and assigns it to the main window variable. This 
object is the root widget, which is the main window in the program. Line 10 calls the 
T k i n t e r  module's mainloop function. This function runs like an infinite loop until you 
close the main window. 

Most programmers prefer to take an object-oriented approach when writing a GUI pro- 
gram. Rather than writing a function to create the on-screen elements of a program, it is a 
common practice to write a class with an -- i n i t  -- method that builds the GUI. When 
an instance of the class is created, the GUI appears on the screen. To demonstrate, Program 
12-2 shows an object-oriented version of our program that displays an empty window. 
When this program runs it displays the window shown in Figure 12-4. 

9 

Program 12-2 (empty-window2.p~) 

1 # This program displays an empty window. 
2 

3 import Tkinter 

(program continues) 



424 Chapter 12 GUI Programming 

Program 12-2 (continued) 

5 class MyGUI: 

6 def -- init--(self) : 
7 # Create the main window widget. 
8 self.main-window = Tkinter.Tk() 

3 

10 # Enter the Tkinter main loop. 
11 Tkinter.mainloop() 

12 

13 # Create an instance of the MyGUI class. 
14 my-gui = MyGUI ( ) 

Lines 5 through 11 are the class definition for the MyGUI class. The class's - - in i t  
method begins in line 6. Line 8 creates the root widget and assigns it to the class attribic 
main - window. Line 11 executes the T k i n t e r  module's mainloop function. The state- 
ment in line 14 creates an instance of the MyGUI class. This causes the class's - - i n i t  -- 
method to execute, displaying the empty window on the screen. 

Checkpoint 

12.5 Briefly describe each of the following T k i n t e r  widgets: 

a) Labe l  
b) E n t r y  
c) Bu t ton  
d) Frame 

12.6 How do you create a root widget? 

12.7 What does the T k i n t e r  module's mainloop function do? 

Display Text with Label Widgets 

I 

L CONCEPT: You use the Label widget to display text in a window. 

You can use a Labe l  widget to display a single line of text in a window. To make a L a b e l  
widget you create an instance of the T k i n t e r  module's Labe l  class. Program 12-3 creates 
a window containing a Labe l  widget that displays the text "Hello World!" The window 
is shown in Figure 12-5. 

Program 12-3 (hello-world.py) 

1 # This program displays a label with text. 
2 

3 import Tkinter 

4 



12.3 Display Text with Label Widgets 425 

5 class MyGUI: 

6 def --init--(self) : 

7 # Create the main window widget. 
8 se1f.mai.n-window = Tkinter.Tk() 

9 

10 # Create a Label widget containing the 
1 I # text 'Hello World! ' 
12 self.labe1 = Tkinter.Label(self.main-window, \ 
13 text='Hello World! ' )  

14 

15 # Call the Label widget's pack method. 
1.6 self.label.pack() 

17 

18 # Enter the Tkinter main loop. 

19 Tkinter.mainloop() 

2 0 

21 # Create an instance of the MyGUI class. 

Figure 12-5 Window displayed by Program 12-3 

The MyGUI class in this program is very similar to the one you saw previously in Program 
12-2. Its -- ini t--  method builds the GUI when an instance of the class is created. Line 8 
creates a root widget and assigns it to s e l f  .main-window. The following statement appears 
in lines 12 and 13: 

self-label = Tkinter.Label(self.main-window, \ 
text='Hello World! ' )  

This statement creates a Labe l  widget and assigns it to s e l f .  label. The first argument 
inside the parentheses is s e l f  .main-window, which is a reference to the root widget. 
This simply specifies that we want the Labe l  widget to belong to the root widget. The sec- 
ond argument is t e x t = ' H e l l o  World! I .  This specifies the text that we want displayed 
in the label. 

0 

The statement in line 16 calls the L a b e l  widget's pack method. The pack method deter- 
mines where a widget should be positioned, and makes the widget visible when the main 
window is displayed. (You call the pack method for each widget in a window.) Line 19 
calls the T k i n t e r  module's mainloop method which displays the program's main win- 
dow, shown in Figure 12-5. 

Let's look at another example. Program 12-4 displays a window with two Labe l  widgets, 
shown in Figure 12-6. 



426 Chapter 12 GUI Programming 

. * 

Program 12-4 (hello-world2.p~) 

1 # This program displays two labels with text. 

3 import Tkinter 

5 class MyGUI: 

def --init--( self) : 

# Create the main window widget. 
self.main-window = Tkinter.Tk() 

# Create two Label widget. 
self.label1 = Tkinter.Label(self.main-window, \ 

text='Hello World!') 

self.label2 = Tkinter.Label(self.main-window, \ 
text='This is my GUI program. ' ) 

# Call both Label widgets' pack method. 

self.labell.pack() 

self.label2.pack() 

# Enter the Tkinter main loop. 
Tkinter.mainloop() 

23 # Create an instance of the MyGUI class. 

Figure 12-6 Window displayed by Program 12-4 

Notice that the two Label widgets are displayed with one stacked on top of the other. We 
can change this layout by specifying an argument to pack method, as shown in Program 12-5. 
When the program runs it displays the window shown in Figure 12-7. 

1 # This program uses the side='leftl argument with 
2 # the pack method to change the layout of the widgets. 
3 

4 import Tkinter 

5 

6 class MyGUI: 

7 def -- init--( self) : 



12.4 Organizing Widgets with Frames 427 

# Create the main window widget. 

self.main-window = Tkinter.Tk() 

# Create two Label widgets. 

self-labell = Tkinter.Label(self.main-window, \ 
text='Hello World! ' )  

self.label2 = Tkinter.Label(self.main-window, \ 
text='This is my GUI program. ' ) 

# Call both Label widgets' pack method. 
self.labell.pack(side='left') 

self.label2.pack(side='left') 

2 1 # Enter the Tkinter main loop. 
2 2 Tkinter.mainloop() 

2 3 

24 # Create an instance of the MyGUI class. 

2 5 my-gui = MyGUI ( ) 

Figure 12-7 Window displayed by Program 12-5 

In lines 18 and 19 we call each L a b e l  widget's pack method passing the argument 
s i d e =  ' l e f t  ' . This specifies that the widget should be positioned as far left as possible 
inside the parent widget. Because the l a b e l 1  widget was added to the main window 
first, it will appear at the leftmost edge. The l a b e l 2  widget was added next, so it appears 
next to the l a b e l 1  widget. As a result, the labels appear side by side. The valid side argu- 
ments that you can pass to the pack method are s i d e = '  t o p ' ,  s i d e = '  b o t t o m ' ,  
s i d e =  ' l e f t  ' , and s i d e = '  r i g h t ' .  

A)$ Checkpoint 

12.8 What does a widget's pack method do? 

.12.9 If you create two Labe l  widgets and call their pack methods with no 
arguments, how will the L a b e l  widgets be arranged inside their parent widget? 

12.10 What argument would you pass to a widget's pack method to gpecify that it 
should be positioned as far left as possible inside the parent widget? 

Organizing Widgets with Frames 

L- CONCEPT: A F r a m e  is a container that can hold other widgets. You can use F r a m e s  
to organize the widgets in a window. 



428 Chapter 12 GUI Programming 

A Frame is a container. It is a widget that can hold other widgets. Frames are useful for 
organizing and arranging groups of widgets in a window. For example, you can place a set 
of widgets in one Frame and arrange them in a particular way, then place a set of widgets 
in another Frame and arrange them in a different way. Program 12-6 demonstrates this. 
When the program runs it displays the window shown in Figure 12-8. 

Program 12-6 (frame-demo.py) 

# This program creates labels in two different frames. 

import Tkinter 

class MyGUI: 

def -- init--(self) : 

# Create the main window widget. 

self-main-window = Tkinter.Tk() 

# Create two frames, one for the top of the 
# window, and one for the bottom. 
self-top-frame = Tkinter.Frame(self.main-window) 

self.bottom-frame = Tkinter.Frame(self.main-window) 

# Create three Label widgets for the 
# top frame. 
self.label1 = Tkinter.Label(self.top-frame, \ 

text='Winkenl) 

self.label2 = Tkinter.Label(self.top-frame, \ 
text='Blinkenl) 

self-label3 = Tkinter.Label(self.top-frame, \ 
text='Nodl) 

# Pack the labels that are in the top frame. 
# Use the side='topl argument to stack them 
# one on top of the other. 
self.labell.pack(side='top') 

self.label2.pack(side='top') 

self.label3.pack(side='top') 

# Create three Label widgets .for the 
# bottom frame. 
self.label4 = Tkinter.Label(self.top-frame, \ 

text='Winken1) 

self-label5 = Tkinter.Label(self.top-frame, \ 
text='Blinkenl) 

self.label6 = Tkinter.Label(self.top-frame, \ 
text='Nod8) 



12.4 Organizing Widgets with Frames 429 

4 0 # Pack the labels that are in the bottom frame. 
4 1 # Use the side='leftl argument to arrange them 

4 2 # horizontally from the left of the frame. 

4 3 self.label4.pack(side='left') 

4 4 self.label5.pack(side='left') 

4 5 self.label6.pack(side='left') 

4 6 

4 7 # Yes, we have to pack the frames too! 

4 8 self-top-frame.pack() 

4 9 self.bottom-frame.pack() 

5 0 

5 1 # Enter the Tkinter main loop. 

52 Tkinter.mainloop() 

5 3 

54 # Create an instance of the MyGUI class. 
55 my gui = MyGUI( ) 

Figure 12-8 Window displayed by Program 12-6 

Take a closer loolc at lines 12 and 13: 

self-top-frame = Tkinter.Frame(self.main-window) 

self.bottom-frame = Tkinter.Frame(self.main-window) 

These, lines create two Frame objects. The self .main window argument that 
appears inside the parentheses cause the Frames to be added to the main window - 
widget. 

Lines 17 through 22 create three Label widgets. Notice that these widgets are added to 
the self. top - frame widget. Then, lines 27 through 29 call each of the Label widgets' 
pack method, passing side= ' top ' as an argument. As shown in Figure 12-6, this 
causes the three widgets to be stacked one on top of the other inside the Frame. 

Lines 23 through 28 create three more Label widgets. These Label widgets are added to 
the self. bottom-f rame widget. Then, lines 43 through 45 call each of the Label widgets' 
pack method, passing side= ' left' as an argument. As shown in Figure 12-9, this causes 
the three widgets to appear horizontally inside the Frame. 

Lines 48 and 49 call the Frame widgets' pack method, which makes the Frame widgets 
visible. Line 52 executes the Tkinter module's mainloop function. 



430 Chapter 12 GUI Programming 

c ; y ~ s ~ +  :2-T Arrangement of \widgets 

label1 
label2 top-frame 
label3 

bottom-frame 

#- CONCEPT: You use the Button widget to create a standard button in a window. 
When the user clicks a button, a specified function or method is called. 

An info dialog box is a simple window that displays a message to the 
user and has an OIC button that dismisses the dialog box. You can use 
the tkMessageBox module's showinfo function to display an info 
dialog box. 

A But ton  is a widget that the user can click to cause an action to take place. When you 
create a Bu t ton  widget you can specify the text that is to appear on the face of the but- 
ton, and the name of a callback function. A callback function is a function or method that 
executes when the user clicks the button. 

To demonstrate, we will look at Program 12-7. This program displays the window shown 
in Figure 12-10. When the user clicks the button, the program displays a separate info 
dialog box, shown in Figure 12-11. We use a function named showinfo,  which is in the 
tkMessageBox module, to display the info dialog box. (To use the showinfo  function 
you will need to import the tkMessageBox module.) This is the general format of the 
showinf o function call: 

tkMessageBox.showinfo(title, message) 

In the general format, t i t l e  is a string that is displayed in the dialog box's title bar, and 
m e s s a g e  is an informational string that is displayed in the main part of the dialog box. 

I # This program demonstrates a Button widget. 
2 # When the user clicks the Button, an 
3 # info dialog box is displayed. 



12.5 Button Widgets and Info Dialog Boxes 431 

import Tkinter 

import tkMessageBox 

class MyGUI: 

def --init--( self ) : 
# Create the main window widget. 

self.main-window = Tkinter.Tk() 

# Create a Button widget. The text 'Click Me! ' 
# should appear on the face of the Button. The 

# do-something method should be executed when 
# the user clicks the Button. 

se1f.m~-button = Tkinter.Button(self.main-window, \ 
text='Click Me!', comrnand=self.do~something) 

# Pack the Button. 

2 1 self-my-button.pack() 

2 2 

2 3 # Enter the Tkinter main loop. 
2 4 Tkinter.mainloop() 

2 5 

2 6 # The do-something method is a callback function 
2 7 # for the Button widget. 

2 8 

2 4 def do-something(se1f): 

3 0 # Display an info dialog box. 
3 1 tkMessageBox.showinfo('Response', \ 
3 2 'Thanks for clicking the button.') 

3 3 

34 # Create an instance of the MyGUI class. 
35  my-gui = MyGUI( ) 

Figure 12-80 The main window displayed by Program 12-7 

Figure 3 72-9 3 The info diz?lsg box displayed by Program 12-7 si 



432 Chapter 12 GUI Programming 

Line 5 imports the T k i n t e r  module and line 6 imports the tkMessageBox module. 
Line 11 creates the root widget and assigns it to the main - window variable. 

The statement in lines 17 through 18 creates the Bu t ton  widget. The first argument inside 
the parentheses is s e l f  .main window, which is the parent widget. The t e x t =  C l i c k  
M e  ! ' argument specifies that tce string 'Click Me!' should appear on the face of the but- 
ton. The command= ' s e l f .  do something ' argument specifies the class's do-something 
method as the callback function. When the user clicks the button, the d o  - something 
method will execute. 

The do something method appears in lines 29 through 32. The method simply calls the 
t k ~ e s & g e ~ o x .  showinf o function to display the info box shown in Figure 12-11. To 
dismiss the dialog box the user can click the OI< button. 

GUI programs usually have a Quit button (or an Exit button) that closes the program when 
the user clicks it. To create a Quit button in a Python program you simply create a Button 
widget that calls the root widget's q u i t  method as a callback function. Program 12-8 
demonstrates how to do this. It is a modified version of Program 12-7, with a second 
But ton  widget added as shown in Figure 12-12. 

# This program has a Quit button that calls . 
# the Tk class's quit method when clicked. 

import Tkinter 

import tkMessageBox 

class MyGUI: 

def -- init--(self) : 

# Create the main window widget. 

self-main-window = Tkinter.Tk() 

# Create a Button widget. The text 'Click Me!' 

# should appear on the face of the Button. The 

# do-something method should be executed when 

# the user clicks the Button. 
se1f.m~-button = Tkinter.Button(self.main-window, \ 

text='Click Me!', command=self.do-something) 



12.6 Getting Input with the Entry Widget 433 

19 # Create a Quit button. When this button is clicked 

2 0 # the root widget's quit method is called. 
2 1 # (The main-window variable references the root widget, 
2 2 # so the callback function is self.main-window.quit.) 

2 3 self-quit-button = Tkinter.B~tton(self.main~window, \ 
2 4 text='Quitg, command=self.main-wind0w.qui.t) 

2 5 

2 6 # Pack the Buttons. 

# Enter the Tkinter main loop. 

Tkinter.mainloop() 

# The do-something method is a callback function 
# for the Button widget. 

def do-something(se1f): 

# Display an info dialog box. 
3 8 tkMessageBox.showinfo('Response', \ 
3 9 'Thanks for clicking the button.') 
4 0 
41 # Create an instance of the MyGUI class. 

Figure 12-12 The info dialog box displayed by Program 12-7 

The statement in lines 23 through 24 creates the Quit button. Notice that the 
self .main window. q u i t  method is used as the callback function. When the user clicks 
the button, tbis method is called and the program ends. 

Getting Input :with t h e  E n t r y  Wtdget 

i-- CONCEPT: An Entry widget is a rectangular area that the user can type input into. 
You use the E n t r y  widget's get method to retrieve the data that has been 
typed into the widget. 

An Entry widget is a rectangular area that the user can type text into. Entry widgets are 
used to gather input in a GUI program. Typically, a program will liave one or more E n t r y  



434 Chapter 12 CUI Programming 

widgets in a window, along with a button that the user clicks to submit the data that he or 
she has typed into the E n t r y  widgets. The button's callback function retrieves data from 
the window's E n t r y  widgets and processes it. 

You use an E n t r y  widget's get  method to retrieve the data that the user has typed into 
the widget. The g e t  method returns a string, so it will have to be converted to the appro- 
priate data type if the E n t r y  widget is used for numeric input. 

To demonstrate we will look at a program that allows the user to enter a distance in kilo- 
meters into an E n t r y  widget, and then click a button to see that distance converted to 
miles. The formula for converting kilometers to miles is: 

Miles = Kilometers X 0.6214 

Figure 12-13 shows the window that the program displays. To arrange the widgets in the 
positions shown in the figure, we will organize them in two frames, as shown in Figure 12-14. 
The label that displays the prompt and the E n t r y  widget will be stored in the top-f rame, 
and their pack methods will be called with the side= l e f t  argument. This will cause 
them to appear horizontally in the frame. The Convert button and the Quit button will be 
stored in the bot tom - frame, and their pack methods will also be called with the 
s i d e =  ' l e f t  ' argument. 

Program 12-9 shows the code for the program. Figure 12-15 shows what happens when the 
user enters 1000 into the E n t r y  widget and then clicks the Convert button. 

Figure 12-13 The k i l o  - c o n v e r t e r  program's window 

Figure 12-14 The window organized with frames 

1 # This program converts distances in kilometers 
2 # to miles. The result is displayed in an info 
3 # dialog box. 
4 

5 import Tkinter 

6 import tkMessageBox 



12.6 Getting Input with the Entry Widget 435 

class KiloConverterGUI: 

def -init-(self): 

# Create the main window. 
self-main-window = Tkinter.Tk() 

# Create two frames to group widgets. 
self.top-frame = Tkinter.Frame(self.main-window) 

self.bottom-frame = Tkinter.Frame(self.main-window) 

# Create the widgets for the top frame. 
self-prompt-label = Tkinter.Label(self.top-frame, \ 

text='Enter a distance in kilometers:') 

self.kilo-entry = Tkinter.Entry(self.top-frame, \ 
width=lO ) 

# Pack the top frame's widgets. 
self.prompt-label.pack(side='le£t') 

self.kilo-entry.pack(side='le£t') 

# Create the button widgets for the bottom frame. 
self.calc-button = Tkinter.Button(self.bottom~frame, \ 

text='Convert', \ 
command=self.convert) 

self.quit-button = Tkinter .But ton(self .bot tom_frarne,  \ 
text= ' Quit ' , \ 
cornmand=self.main~window.quit) 

# Pack the buttons. 
self.calc-button.pack(side='left') 

self.quit-button.pack(side='left') 

# Pack the frames. 
self.top-frame.pack() 

self.bottom-frame.pack() 

# Enter the Tkinter main loop. 
Tkinter.mainloop() 

# The convert method is a callback function for 
# the Calculate button. 

def convert(se1f): 

# Get the value entered by the user into the 
# kilo-entry widget. 
kilo = float(self.ki10-entry.get()) 

(program continues) 



436 Chapter 12 GUI Programming 

(continued) 

# Convert kilometers to miles. 
miles = kilo * 0.6214 

# Display the results in an info dialog box. 
tkMessageBox.showinfo('Results', \ 

str(ki1o) + ' kilometers is equal to ' + \ 
str (miles) + ' miles. ' ) 

62 # Create an instance of the KiloConverterGUI class. 

Figure 12-15 The info dialog box 

The user enters 1000 into 
@ the Entry widget and clicks 

the Convert button. 

This info dialog box 0 is displayed. 

i " - -  8 Eriter a distance m I ~lorneters I1 Cill(i - -! 

The c o n v e r t  method, shown in lines 49 through 60 is the Convert button's callback func- 
tion. The statement in line 52 calls the k i l o  e n t r y  widget's get  method to retrieve the 
data that has been typed into the widget. ~ % e  value is converted to a f l o a t  and then 
assigned to the k i l o  variable. The calculation in line 55 performs the conversion and 
assigns the results to the m i l e s  variable. Then, the statement in lines 58 through 60 dis- 
plays the info dialog box with a message that gives the converted value. 

Using babels as Output Fields 

L CONCEPT: When a stringvar object is associated with a Label widget, the 
Label widget displays any data that is stored in the stringvar object. 

Previously you saw how to use an info dialog box to display output. If you don't want to 
display a separate dialog box for your program's output, you can use Labe l  widgets in the 
program's main window to dynamically display output. You simply create empty Labe l  
widgets in your main window, and then write code that displays the desired data in those 
labels when a button is clicked. 

The T k i n t e r  module provides a class named S t r i n g V a r  that can be used along with a 
L a b e l  widget to display data. First you create a S t r i n g V a r  object. Then, you create a 



12.7 Using Labels as Output Fields 437  

Label widget and associate it with the stringvar object. From that point on, any value 
that is then stored in the stringvar object will automatically be displayed in the Label 
widget. 

Program 12-10 demonstrates how to do this. It is a modified version of the kilo 
converter program that you saw in Program 12-9. Instead of popping up an info 
dialog box, this version of the program displays the number of miles in a label in the 
main window. 

Program 12-1 0 (kilo-converter2.p~) 

# This program converts distances in kilometers 
# to miles. The result is displayed in a label 
# on the main window. 

import Tkinter 

class KiloConverterGUI: 

def --init--(self) : 

# Create the main window. 

self.main-window = Tkinter.Tk() 

# Create three frames to group widgets. 
self.top-frame = Tkinter.Frame() 

self.mid-frame = Tkinter.Frame() 

self.bottom-frame = Tkinter.Frame() 

# Create the widgets for the top frame. 
self.prompt-label = Tkinter.Label(self.top~frame, \ 

text='Enter a distance in kilometers:') 

self.kilo-entry = Tkinter.Entry(self.top-frameI \ 
width=lO ) 

# Pack the top frame's widgets. 
self.prompt-label.pack(side='left') 

self.kilo-entry.pack(side='left') 

# Create the widgets for the middle frame. 
self.descr-label = Tkinter.Label(self.mid-frameI \ 

text= ' Converted to miles : ' ) 

# We need a StringVar object to associate with 
# an output label. Use the object's set method 
# to store a string of blank characters. 
self.value = Tkinter.StringVar() 

(program continues) 



438 Chapter 12 GUI Programming 

Program 12-1 0 (continued) 

# Create a label and associate it with the 
# StringVar object. Any value stored in the 
# StringVar object will automatically be displayed 
# in the label. 
self.miles-label = Tkinter.Label(self.mid-frame, \ 

textvariable=self.value) 

# Pack the middle frame's widgets. 
self.descr-label.pack(side='left') 
self.miles-label.pack(side='left') 

# Create the button widgets for the bottom frame. 
self.calc-button = Tkinter.Button(se1f.bottom-frame, \ 

text='Convertl, \ 
command=self.convert) 

se1f.qui.t-button = Tkinter.Button(self.bottom~frame, \ 
text= 'Quit ' , \ 
cornmand=self.main~window.quit) 

# Pack the buttons. 
self.calc-button.pack(side='left') 

self.quit-button.pack(side='leftt) 

# Pack the frames. 
self.top-frame.pack() 

self.mid-frame.pack() 

self.bottom-frame.pack() 

# Enter the Tkinter main loop. 
Tkinter.mainloop() 

# The convert method is a callback function for 
# the Calculate button. 

def convert(se1f): 

# Get the value entered by the user into the 
# kilo-entry widget. 

kilo = float(self.ki10-entry.get()) 

# Convert kilometers to miles. 
miles = kilo * 0.6214 

# Convert miles to a string and store it 
# in the StringVar object. This will automatically 
# update the miles-label widget. 



12.7 Using Labels as Output Fields 439 

self.value.set(miles) 

84 # Create an instance of the KiloConverterGUI class. 

When this program runs it displays the window shown in Figure 12-16. Figure 12-17 shows 
what happens when the user enters 1000 for the kilometers and clicks the Convert button. 
The number of miles is displayed in a label in the main window. 

Esgure 12-16 The windo\&/ initially displayed 

1, Enter a diztance m kilometer;: i 1 

gigwe 12-1 7 The window showing 1000 kilometers converted to miles 

Erfter 3 d r i a n ~ e  In kilometer:: 11Ci30 1 

Let's look at the code. Lines 14 through 16 create three frames: t o p  frame, mid_£ rame, 
and bot tom - frame. Lines 19 through 26 create the widgets for the top frame and calls 
their pack method. 

Lines 29 through 30 create the Label widget with the text C o n v e r t e d  t o  m i l e s  : ' 
that you see on the main window in Figure 12-16. Then, line 35 creates a S t r i n g v a r  
object,and assigns it to the v a l u e  variable. Line 41 creates a L a b e l  widget named 
m i l e s  - l a b e l  that we will use to display the number of miles. Notice that in line 42 
we use the argument textvariable=self.value. This creates an association 
between the L a b e l  widget and the s t r i n g v a r  object that is referenced by the v a l u e  
variable. Any value that we store in the S t r i n g v a r  object will be displayed in the 
label. 

Lines 45 and 46 pack the two Label widgets that are in the mid frame, Lines 49 through 
58 create the Bu t ton  widgets and pack them. Lines 61 through 63 pack the Frame 
objects. Figure 12-18 shows how the various widgets in this window are organized in the 
three frames. 

The c o n v e r t  method, shown in lines 71 through 82 is the Convert button's callback func- 
tion. The statement in line 74 calls the k i l o  e n t r y  widget's g e t  method to retrieve the 
data that has been typed into the widget. ~ i e  value is converted to a f l o a t  and then 
assigned to the k i l o  variable. The calculation in line 77 performs the conversion and 



440 Chapter 1.2 GUI Programming 

assigns the results to the miles variable. Then the statement in line 82 calls the 
Stringvar object's set method, passing miles as an argument. This stores the value ref- 
erenced by miles in the stringvar object, and also causes it to be displayed in the 
miles - label widget. 

Figure=-78 hayout of the kilo - converter2 program's main window 

top-frame 

mid frame miles label - 
(invisible) 

bottom-f rame 

hat caust 









Checkpoint 

12.11 How do you retrieve data from an E n t r y  widget? 

12.12 When you retrieve a value from an E n t r y  widget, of what data type is it? 

12.13 What module is the s t r i n g v a r  class in? 

12.14 What can you accomplish by associating a S t r i n g v a r  object with a Label  
widget? 

Radio Butteas and Check Bugtons 

1- CONCEPT: Radio buttons normally appear in groups of two or more and allow the 
user to select one of several possible options. Check buttons, which may 
appear alone or in groups, allow the user to make yes/no or on/off 
selections. 

Radio buttons are useful when you want the user to select one choice from several possible 
options. Figure 12-22 shows a group of radio buttons. A radio button may be selected or 
deselected. Each radio button has a small circle that appears filled in when the radio but- 
ton is selected and appears empty when the radio button is deselected. 

FJg?!rre 12-22 la,grap of radio buttons - 

You use the T k i n t e r  module's Rad iobu t ton  class to create Rad iobu t ton  widgets. 
Only one of the Rad iobu t ton  widgets in a container, such as a frame, may be selected at 



12.8 Radio Buttons Check Buttons 445 

any time. Clicking a Rad iobu t ton  selects it and automatically deselects any other 
Rad iobu t ton  in the same container. Because only one Rad iobu t ton  in a container can 
be selected at any given time, they are said to be mutually exclusive. 

NOTE: The name "radio button" refers to the old car radios that had push buttons 
for selecting stations. Only one of the buttons could be pushed in at a time. When 
you pushed a button in, it automatically popped out any other button that was 
pushed in. 

The T k i n t e r  module provides a class named I n t v a r  that can be used along with 
Radiobut ton widgets. When you create a group of Radiobuttons,  you associate them all 
with the same I n t v a r  object. You also assign a unique integer value to each Radiobut ton 
widget. When one of the Radiobut ton widgets is selected, it stores its unique integer value 
in the I n t v a r  object. 

Program 12-12 demonstrates how to create and use Radiobut tons .  Figure 12-23. shows 
the window that the program displays. When the user clicks the OI< button an info dialog 
box appears indicating which of the Radiobut tons  is selected. 

# This program demonstrates a group of Radiobutton widgets. 

import Tkinter 

import tkMessageBox 

class MyGUI: 
def -- init--(self) : 

# Create the main window. 

self.main-window = Tkinter.Tk() 

# Create two frames. One for the Radiobuttons 
# and another for the regular Button widgets. 

self.top-frame = Tkinter.Frame(self.main-window) 

self. bottom-f rame = Tkinter . Frame ( self .main-windod) 

# Create an IntVar object to use with 
# the Radiobuttons. 
self.radj-o-var = Tkinter.IntVar() 

# Set the intVar object to 1. 
(program continues) 



446 Chapter 12 GUI Programming 

Program 12-1 2 (continued) 

# Create the Radiobutton widgets in the top-frame. 
self.rb1 = Tkinter.Radiobutton(se1f.top-frame, \ 

text='Option l', variable=self.radio-var, \ 
value=l ) 

self.rb2 = Tkinter.Radiobutton(self.top~frame, \ 
text='Option 2', variable=self.radio-var, \ 
value=2 ) 

self.rb3 = Tkinter.Radiobutton(self.t~p~frame, \ 
text='Option 3', variable=self.radio-var, \ 
value=3 ) 

# Pack the Radiobuttons. 
self.rbl.pack() 

self.rb2.pack() 

self.rb3.packO 

# Create an OK button and a Quit button. 
self.ok-button = Tkinter.Button(se1f.bottom-frame, \ 

text='OK1, command=self.show~choice) 

self-quit-button = Tkinter.Button(self.bottom~frame, \ 
text='Quitl, command=self.main~window.quit) 

# Pack the Buttons. 
self.ok-button.pack(side='leftl) 

se1f.qui-t-button.pack(side='left') 

# Pack the frames. 

self.top-frame.pack() 

self.bottom-frame.pack() 

# Start the mainloop. 
Tkinter.mainloop() 

# The show-choice method is the callback function for the 

# OK button. 

def show-choice(se1f): 

tkMessageBox.showinfo('Selection', 'You selected option ' +\ 
str(self.radio-var.get())) 

63 # Create an instance of the MyGUI class. 



12.8 Radio Buttons Check Buttons 447 

"%n~rpe -2-23 Windoliv displayed by Program 12-12 

Line 18 creates an I n t v a r  object named r a d i o  v a r .  Line 21 calls the r a d i o  v a r  - - 
object's set method to store the integer value 1 in the object. (You will see the significance 
of this in a moment.) 

Lines 24, 25, and 26 create the first Rad iobu t ton  widget. The argument v a r i a b l e  
= s e l f . r a d i o  v a r  (in line 25) associates the Rad iobu t ton  with the r a d i o  v a r  - - 
object. The argument v a l u e = l  (in line 26) assigns the integer 1 to this Radiobut ton.  As 
a result, any time this Rad iobu t ton  is selected, the value 1 will be stored in the 
radio-var  object. 

Lines 27, 28, and 29 create the second R a d i o b u t t o n  widget. Notice that this 
Rad iobu t ton  is also associated with the r a d i o  v a r  object. The argument va lue=2  (in 
line 29) assigns the integer 2 to this ~ a d i o b u t t o n .  As a result, any time this 
Rad iobu t ton  is selected, the value 2 will be stored in the r a d i o  v a r  object. - 
Lines 30, 31, and 32 create the third Rad iobu t ton  widget. This Rad iobu t ton  is also 
associated with the radio-var  object. The argument v a l u e = 3  (in line 32) assigns the 
integer 3 to this Radiobut ton.  As a result, any time this Rad iobu t ton  is selected, the 
value 3 will be stored in the r a d i o  v a r  object. - 
The show c h o i c e  method in lines 59 through 61 is the callbaclc function for the OIC but- 
ton. ~ h e G h e  method executes it calls the r a d i o  v a r  object's g e t  method to retrieve the - 
value stored in the object. The value is displayed in an info dialog box. 

Did you notice that when the program runs the first R a d i o b u t t o n  is initially selected? 
This is because we set the r a d i o  v a r  object to the value 1 in line 21. Not only can the 
r a d i o  - v a r  object be used to dererrnine which R a d i o b u t t o n  was selected, but it can 
also be used to select a specific R a d i o b u t t o n .  When we store a particular 
~ a d i o b u t t o n ' s  value in the r a d i o  v a r  object, that R a d i o b u t t o n  will become - 
selected. 

Program 12-12 waits for the user to click the OK button before it determines which 
Rad iobu t ton  was selected. If you prefer, you can also specify a callback function with 
Rad iobu t ton  widgets. Here is an example: 



448 Chapter 12 GUI Programming 

This code uses the argument cornmand=self .my method to specify that my-method is 
the callback function. The method my - method will be executed immediately when the 
Rad iobu t ton  is selected. 

Check Buttons 
A check button appears as a small box with a label appearing next to it. The window 
shown in Figure 12-24 has three check buttons. 

Figure 12-24 A group of check buttons 

Like radio buttons, check buttons may be selected or deselected. When a check button is 
selected, a small check mark appears inside its box. Although check buttons are often dis- 
played in groups, they are not used to make mutually exclusive selections. Instead, the user 
is allowed to select any or all of the check buttons that are displayed in a group. 

You use the T k i n t e r  module's Checkbut ton class to create Checkbut ton widgets. As 
with Rad iobu t tons ,  you can use an I n t v a r  object along with a Checkbut ton widget. 
Unlike Rad iobu t tons ,  however, you associate a different I n t v a r  object with each 
Checkbutton.  When a Checkbut ton is selected, its associated I n t v a r  object will hold 
the value 1. When a Checkbut ton is selected, its associated I n t v a r  object will hold the 
value 0. 

Program 12-13 demonstrates how to create and use Checkbuttons. Figure 12-25 shows 
the window that the program displays. When the user clicks the OK button an info dialog 
box appears indicating which of the Checkbuttons is selected. 

Program 12-1 3 (checkbutton-demo.py) 

# This program demonstrates a group of Checkbutton widgets. 

import Tkinter 

import tkMessageBox 

class MyGUI: 

def -- init--(self) : 

# Create the main window. 

# Create two frames. One for the checkbuttons 



12.8 Radio Buttons Check Buttons 449 

# and another for the regular Button widgets. 
self-top-frame = Tkinter.Frame(self.main-window) 

self.bottom-frame = Tkinter.Frame(self.main-window) 

# Create three IntVar objects to use with 
# the Checkbuttons. 
self-cb-varl = Tkinter-IntVar() 

self-cb-var2 = Tkinter.IntVar() 

self-cb-var3 = Tkinter-IntVar() 

# Set the intVar objects to 0. 

self.cb-varl.set(0) 

self-cb-var2.set(O) 

self-cb-var3.set(O) 

# Create the Checkbutton widgets in the top-frame. 
self.cb1 = Tkinter.Checkb~tton(self.top~frame, \ 

text='Option l', variable=self.cb-varl) 
self.cb2 = Tkinter.Checkbutton(self.topPframe, \ 

text='Option 2 ' ,  variable=self.cb-var2) 

self.cb3 = Tkinter.Checkbutton(self.t~p~frame, \ 
text='Option 3', variable=self.cb-var3) 

# Pack the Checkbuttons. 

self.cbl.pack() 

self.cb2.pack() 

self.cb3.pack() 

# Create an OK button and a Quit button. 
self.ok-button = Tkinter.Button(self.bottom~frame, \ 

text='OK1, command=self.show~choice) 

self.quit-button = Tkinter.Button(se1f.bottom-frameI \ 
text='Quitl, command=self.main~window.quit) 

# Pack the Buttons. 
self.ok-button.pack(side='left') 

self.quit-button.pack(side='left') 

# Pack the frames. 
self.top-frame.pack() 

self.bottom-frame.pack() 

# Start the mainloop. 
Tkinter.mainloop() 

# The show-choice method is the callback function for the 

(program continues) 



450 Chapter 12 GUI Programming 

Program 12-1 3 (continued) 

5 8 # OK button. 
5 9 

6 0 def show-choice(se1f): 
# Create a message string. 
self.message = 'You selected:\nl 

# Determine which Checkbuttons are selected and 
# build the message string accordingly. 
if self.cb-varl.get() == 1: 

self.message = self.message + 'l\n' 

if self .cb_var2. get ( ) == 1: 

self-message = self.message + '2\n1 
if self .cb_var3. get ( ) == 1: 

self-message = self.message + '3\n1 

# Display the message in an info dialog box. 
tkMessageBox.showinfo('Selection', self.message) 

76 # Create an instance of the MyGUI class. 

Fsg~ere 12-25 Window displayed by Program 12-1 3 

Checkpoint 

12.15 You want tile user to be able to select only one item from a group of items. 
Which type of component would you use for the items, radio buttons or check 
boxes? 

12.16 You want the user to be able to select any number of items from a group of 
items. Which type of component would you use for the items, radio buttons or 
check boxes? 

12.17 How can you use an I n t v a r  object to determine which Rad iobu t ton  has been 
selected in a group of ~ a d i o b u t t o n s ?  

12.18 How can you use an I n t v a r  object to determine whether a Checkbutton has 
been selected? 















Before you can run Python programs on your computer you will need to install the Python 
interpreter. A version of Python for Windows is included on the Student CD that accompa- 
nies this book. If you can't locate the Student CD, you can download the latest version of 
the Python Windows installer from www.python. org/download.  The website also pro- 
vides downloadable versions of Python for several other operating systems. 

When you execute the Python Windows installer, it's best to accept all of the default set- 
tings by clicking the Next button on each screen. (Answer "Yes" if you are prompted 
with any YesINo questions.) As you perform the installation, take note of the directory 
where Python is being installed. It will be something similar to c : \Python25.  (The 25 
in the path name represents the Python version. At the time of this writing Python 2.5 
is the most recent version.) You will need to remember this location after finishing the 
installation. 

When the installer is finished, the Python interpreter, the IDLE programming environment, 
and the Python documentation will be installed on your system. When you click the Start 
button and look at your All Programs list you should see a program group named some- 
thing like Pytho~a 2.5. The program group will contain the following items: 

IDL9 (Python GU%)-When you click this item the IDLE programming environment 
will execute. IDLE is an integrated development environment that you can use to cre- 
ate, edit, and execute Python programs. See Appendix B for a brief introduction to 
IDLE. 

Y 
Module Docs-This item launches a utility program that allows you to browse doc- 
umentation for the modules in the Python standard library. 

0 Python Command Line-Clicking this item launches the Python interpreter in inter- 
active mode. 
Python Manuals-This item opens the Python Manuals in your web browser. The 
manuals include tutorials, a reference section for the Python standard library, an in- 
depth reference for the Python language, and information on many advanced topics. 
Uninstall Python-This item removes Python from your system. 



458 Appendix A Installing Python 

If you plan to execute the Python interpreter from a command prompt window, you will 
probably want to add the Python directory to the existing contents of your system's P a t h  
variable. (You saw the name of the Python directory while installing Python. It is something 
similar to C:  \ ~ y t h o n 2 5 . )  Doing this will allow your system to find the Python interpreter 
from any directory when you run it at the command-line. 

Use the following instructions to edit the P a t h  variable under Windows XP and Windows 
Vista. 

Windows XP 

* Open the Control Panel. 
* Double-click the System icon. (If you are running Windows XP in Category View, 

click Performance and Maintenance in the Control Panel, and then click the System 
icon.) 

* Click the Advanced tab. 
Click the Environment Variables button. In the System Variables list, scroll to the 
P a t h  variable. 

* Select the P a t h  variable and click the Edit  button. Add a semicolon to the end of the 
existing contents, and then add the Python directory path. 
Click the OK button. 

Windows Vista 
* Open the Control Panel. 
* Select System and Maintenance. 
* Select System. 

Select Advanced System Settings. 
Click the Environment Variables button. 
In the System Variables list, scroll to the P a t h  variable. 

* Select the P a t h  variable and click the Edit button. Add a semicolon to the end of the 
existing contents, and then add the Python directory path. 
Click the OK button. 



IDLE is an integrated development environment that combines several development tools 
into one program, including the following: 

A Python shell running in interactive mode. You can type Python statements at 
the shell prompt and immediately execute them. You can also run complete Python 
programs. 

* A text editor that color codes Python keywords and other parts of programs. 
0 A "check module" tool that checks a Python program for syntax errors without run- 

ning the program. 
* Search tools that allow you to find text in one or more files. 
0 Text formatting tools that help you maintain consistent indentation levels in a Python 

program. 
A debugger that allows you to single-step through a Python program and watch the 
values of variables change as each statement executes. 

0 Several other advanced tools for developers. 

The IDLE software is bundled with Python. When you install the Python interpreter, 
IDLE is automatically installed as well. This appendix provides a quick introduction to 
IDLE, and describes the basic steps of creating, saving, and executing a Python 
program. 

After Python is installed on your system a Python program group will appear in your 
Start menu's program list. One of the items in the program group will be titled IDLE 
(Python GUI).  Click this item to start IDLE and you will see the Pyaon Shell window 
shown in Figure B-1. Inside this window the Python interpreter is running in interactive 
mode, and at the top of the window is a menu bar that provides access to all of IDLE'S 
tools. 



460 Appendix B Introduction to IDLE 

P* .-iia~pe ?-* IDLE shell window 

( I n t e l )  an win32 
Type "cop'ymghtR, "credats" o r  "PLcense ( )  " f  on mare information. 

* * * * * *C*** * * * * * *~**P?~* I~** *?~Q**** * *X~*** * * * * * * *~** * *~W*W***~*** * * *  

PereonaX flrewa3.B sof tware  may warn &out t h e  conaectrnn ID= 
makes t o  i ts rmbprocesu usang t h r z  cnnputer% i n t e r n a l  loopback 
s n t e r f a c e .  Thns connectlox rs not  v r=ab le  on any e x t e r n a l  
xn te r face  and nn da ta  a= s e n t  t o  o r  recerved from t 3 e  I n t e r n e t .  
* * * * * * * * * * ~ * * * * * * , * * * X X * C * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * *  

XDLE 1.2.1 

The >>> prompt indicates that the interpreter is waiting for you to type a Python statement. 
When you type a statement at the >>> prompt and press the Enter key, the statement is 
immediately executed. For example, Figure B-2 shows the Python Shell window after three 
statements have been entered and executed. 

FZala~e 9-2 Statements executed by ",he Python interpreter 

LYntel) on win32 
Type A ~ o p y ~ r g 3 t " ,  R ~ r e d ~ t s n  01 *I I rcen~e  ( )  " f o r  mane anf ornataon. 

* * * f * *~ * * * * * * * * * * * * * * * * * * * * * I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *~ * *  

Perzonal fxzewal l  sof tware  mag warn about t h e  conlrectlon IDLZ 
makes t o  ~ t s  suhpracess usang tars c o ~ r p ~ ~ t e z ' s  snterna? laopback 
r n t s r f a c e .  T h r ~  conoectron az  not  v a s i b l e  on any e x t e r n a l  
xn te r face  and no d a t a  r r  s e n t  %a o r  recerved from t h e  I n t e r n e t .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P D I E  1 . 2 . 1  
>>> name = fAehecca" 
>>> fa-rorr te  food = 9p33gi?et~i." 

>>> plrrst 'Hy r,a-~e is\ namete, %ad I l r k e "  favarrte-food 
My n m  a s  Rebecca and 1 Pxke spaphett-1. 



Writing a Python Program in the IDLE Editor 461 

When you type the beginning of a multiline statement, such as an i f  statement or a 
loop, each subsequent line is automatically indented. Pressing the Enter key on an empty 
line indicates the end of the multiline statement and causes the interpreter to execute it. 
Figure B-3 shows the Python Shell window after a f o r  loop has been entered and 
executed. 

p?m.,nre - "I-Z A muitiline statement executed by the Python intnrpreter 

Fie Ed~t Shell Debug Opbons ihv'indows Help 

Fgthon 2 . 5 . :  [r25::54865, Lpr ,? 2007, 08:58:09] [MSC u.lQ10 32 bit 2 
45nt~4) 1 on win32 

Type  mcopyright", n~~edits" oz nlZcense{)m far more ~nfarmatPon. 

* * * * * * ~ * * * * * * * * * * X * * * * * * - * w * P ~ * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * ~ * *  

Pereonah firewall software may warn about the connection IDLT 
m a k e =  ta its eubproces~ uzang thas campater% knteraal loopback 
interface. Thzs connectaoa is not v5sible on any exterxal 
intezfece and no data ie eent to or received from the Intermt. 
* + * * * ~ * h w w * * f x * * * * * * * * ' b * * ~ C Z . * * i * n r * * * * * * * n r * * ~ * Z . w w ~ ~ ~ . * & ~ ~ ~ * * w * * * * w ~  

To write a new Python program in IDLE you open a new editing window. As shown in 
Figure B-4 you click File on the menu bar, then click New Window. (Alternatively you can 
press Ctrl+N.) This opens a text editing window like the one shown in Figure B-5. 

F. 



462 Appendix B Introduction to IDLE 

E $ ~ P Q F " ~  -+ B-4 The File menu 

5mwser ciess usFnc :  this compaZcz3s %interne1 loopback 
- 3 i n e ~ t i O ~  13 not ~ i s i b " ~  on say e x t e r ~ a l  

Save - CM+5 t a  F s  sent to o r  received from the Laternet. 
Save Bs.. . Ctrl+Sh~ft& + * ~ * * W ~ + * * ~ * * * * * * * X \ P ~ ~ * I * * * ~ * * * * * ~ W ? ~ * * P * C I I * * * *  

Kiyuw B-5 A text editing window 

To open a program that already exists, click File on the menu bar, then Open. Simply 
browse to the file's location and select it, and it will be opened in an editor window. 



Automatic Indentation 463 

<Q'"F"~F 

Code that IS typed into the editor w~ndow, as well as in the Python Shell wmdow, 1s col- 
orlzed as follows: 

0 Python lceywords are displayed in orange. 
0 Comments are displayed in red. 
0 String literals are displayed in green. 
0 Defined names, such as the names of functions and classes, are displayed in blue. 
0 Built-in functions are displayed in purple. 

Figure B-6 shows an example of the editing window containing colorized Python code. 

E- ' r - scu r~  3-6 Colorized code in the ebitinq wlindom~ 

c - r l lEk3.~1(} : 

f @% a password Zrom the user. 
pzssward = raw - ~ n p " ? t ( ' E n : ~ r  cne &&zzwcrCJ: 

1 Determ~ne wkether the carrect password 
* was ectered. 
x f  password = 3 p x , 3 3 g e x ~  : 

g.r::-t T ~ s s ~ ~ ; z r d  arcepce?. " 
6..&,2??: 

~ s - 2 7  "~rrry,  --at rz t?*e arcing gass$~2s*A," 

5 C a l l  the na%n fuoctxon. 

f l s  -2 

i$ 

you can specify colors for each element of a Python program. 

The IDLE editor has features that help you to maintain consistent indentation in your 
Python programs. Perhaps the most helpful of these features is automatic indentation. 
When you type a line that ends with a colon, such as an i f  clause, the first line of a loop, 
or a function header, and then press the Enter key, the editor automatically indents the lines 



464 Appendix B Introduction to IDLE 

that are entered next. For example, suppose you are typing the code shown in Figure B-7. 
After you press the Enter key at the end of the line marked 0, the editor will automatically 
indent the lines that you type next. Tlien, after you press the Enter key at the end of the line 
marked@, the editor indents again. Pressing the Backspace key at the beginning of an 
indented line cancels one level of indentation. 

Fiqwe B-7 Lines that cause au"roma:ic inder7la"iion 

$ P r i n t  a mzssaqe f i r e  Ctimes.  

20s x iz range ( 5 )  : 

% C a l l  t&e main function. 

By default, IDLE indents four spaces for each level of indentation. It is possible to change 
the number of spaces by clicking Options on the menu bar, then clicking Configure IDLE. 
Make sure FontsITabs is selected at the top of the dialog box, and you will see a slider bar 
that allows you to change the number of spaces used for indentation width. However, 
because four spaces is the standard width for indentation in Python, it is recommended that 
you keep this setting. 

Saving a k r o c ~ a ~  
In the editor window you can save the current program by performing any of these opera- 
tions from the File menu: 

Save 
Save AS 

Save Copy As 

The Save and Save As operations work just as they do in any Windows application. The 
Save Copy As operation works like Save As, but it leaves the original program in the edi- 
tor window. 



Running a Program 465 

Once you have typed a program into the editor, you can run it by pressing the F5 key, or 
as shown in Figure B-8, by clicking Run on the editor window's menu bar, then Run 
Module. If the program has not been saved since the last modification was made, you will 
see the dialog box shown in Figure B-9. Click OK to save the program. When the pro- 
gram runs you will see its output displayed in IDLE'S Python Shell window, as shown in 
Figure B-10. 

Figure B-8 The editor window's Run menu 

Figure B-9 Saav confirmation dialog box 



466 Appendix B Introduction to IDLE 

e^.r"n~~sl 9-V 00utatut displayed in the Python Shell \/vindo\~ 
v 

Program 

Fit-or 2 . 5 . -  i-:l-.S-:bs, Y_FZ _ ^  2 2 " - ,  O P : 5 _ : - = I  :?53 .:;_1 5; tit ,Irte_, 
br wxn32 
T ~ F P  acopyrightR, "credits' or "lrcense()" for more mformatron. 

******Xl**t*l**l****%**************I*~*********~********~******* 

Personal flrewall software may warn about the connectron ID= 
nakes to ;ts subprocess uslna thas cowuter's mternal loopback 
anterface. This connection 1s not rnzible on any external 
anterface end no data as sent to or recerned from the Internet. 
- X * * * t * * * * * * X X * * X * * * * * * * * ~ * C * * f * , ~ * * * ~ * ~ * + ~ * * * * * * * * * * * * *  

IDLE 1.2.1 
>>. , RESTART ------ ---===-- ----------== 

>>> 
Sello world' 
Bello world' 
Eelio world" 
Bello world" 
Uelio world' 
>>> 1 

If a program contains a syntax error, when you run the program you will see the dialog box 
shown in Figure B-11. After you click the OK button the editor will highlight the location 
of the error in the code. If you want to check the syntax of a program without trying to run 
it, you can click Run on the menu bar, then Check Module. Any syntax errors that are 
found will be reported. 

~'gsww B-88 Dialog box reporting a syntax error 

This appendix has provided an overview for using IDLE to create, save, and execute pro- 
grams. IDLE provides many more advanced features. To read about additional capabilities, 
see the official IDLE documentation at www.python.org/idle. 



The following table lists the ASCII (American Standard Code for Information Interchange) 
character set, which is the same as the first 127 Unicode character codes. This group of 
character codes is known as the Latin Subset of Unicode. The code columns show charac- 
ter codes and the character columns show the corresponding characters. For example, the 
code 65 represents the letter A. Note that the first 31 codes, and code 127, represent con- 
trol characters that are not printable. 

Code Character Code Character Code Character Code Character Code Character 

Backspace 34 

10 Line Feed 36 62 > 8 8 X 114 r 
11 VTab 3 7 % 6 3 ? 8 9 Y 115 s 
12 Form Feed 38 & 6 4 @ 9 0 Z 116 t 
13 CR 3 9 6 5 A 9 1 1 117 u 

14 SO 4 0 ( 6 6 B 9 2 \ 118 v 
15 SI 4 1 ) 6 7 C 9 3 1 119 w 
16 DLE 4 2 * 6 8 D 9 4 120 x A 

17 DC 1 4 3 + 6 9 E 95 - 121 Y 
18 DC2 4 4 7 0 F 9 6 122 z 

19 DC3 4 5 - 7 1 G 9 7 a 123 { 

2 0 DC4 4 6 7 2 H 9 8 b 124 
2 1 NAK 4 7 / 7 3 I 9 9 c 125 ? 

I 

2 2 SYN 4 8 0 7 4 J 100 d 126 - 
2 3 ETB 4 9 1 7 5 K 101 e 127 DEL 
2 4 CAN 5 0 2 7 6 L 102 f 
2 5 EM 5 1 3 7 7 M 103 g 





Symbols 
# character, 39 
% operator, 175 
"= operator, 175 
" operator 

multiplication, 53 
repetition, 292-293 

+= operator, 175 
+ operator 

for addit~on, 53 
for string concatenation, 63-64 

<= operator 
defined, 116 
relationship testing, 117 

< operator 
defined, 116 
in string comparisons, 129 

== operator 
assignment operator 

versus, 117 
defined, 116 
in string comparisons, 126 
use example, 11 9 
value comparison, 117 

= (assignment operator), 41 
-= operator, 175 
/= operator, 175 
!= operator 

defined, 116 
example use, 11 9 
value determination, 117 

/ (division operator), 53 
>= operator 

defined, 116 
relationship testing, 117 

>>z prompt, 21, 22, 460 
> operator 

defined, 116 
example use, 117 

flowchart, 11 8 
in string comparisons, 128-129 

1 separator, 321 

A 
Accessor methods, 355 
Accumulators, 173, 266 
a c o s  ( ) function, 213 
Actions 

class, 365 
conditionally executed, 114 

Ada programming language, 17  
Addition (+) operator 

in concatenating lists, 307 
precedence, 53 

Algebraic expressions 
conversion example, 57-58 
converting to programming 

statements, 56-58 
examples, 56 

Algorithms 
defined, 33 
example, 33 
recursive, 406-413 

and operator 
defined, 138 
short-circuit evaluation, 140 
truth table, 139 
use example, 139 

append ( ) method 
defined, 300, 301 
first call, 302 
program example, 301-302 

Append mode, 238 
Appending, data to files, 238 
Application software, 7 
Arguments 

defined, 93 
keyword, 101-103 

listing order, 98-99 
multiple, passing, 97-99 
parameter changes and, 

99-101 
passed to r a n g e  function, 165 
passing lists as, 311-312 
passing to functions, 93-103 
passing variables as, 95 
positional, mixing with 

keyword arguments, 103 
as step values, 165 

Arrays, 295 
ASCII (American Standard Code 

for Information 
Interchange) code, 
11-12, 127 

ASCII character set, 467 
a s i n (  ) function, 213 
Assemblers, 16 
Assembly language, 15-16 
Assignment operator (=) 

augmented, 175-176 
defined, 41 
equality operator (==) 

versus, 117 
Assignment statements 

example, 40 
format, 41 
global variable creation, 104 
math expression, 50-51 
moving, 92 
variable creation with, 

40-43 
a t a n  ( ) function, 213 
A t t r i b u t e E r r o r  exception, 392 
Augmented assignment operators 

defined, 175 
list of, 175 
using, 176 



470 Index 

Automobi le  class 
classes inheriting from, 377-378 
code, 375-376 
as complete class, 377 
general data, 377 
get- doors  method, 379 
get-make method, 379 
get -mi leage  method, 379 
get-model method, 379 
g e t- p r i c e  method, 379 

-- i n i t  -- method, 376, 
378 

se t- doors  method, 378 
subclasses inheriting from, 377 
superclass, 375 
in UML diagram, 383 

Averages 
calculating, 55-56 
list value, 310-311 

B 
Baclcslash (\). See Escape characters 
BankAccount class example 

ge t -ba l ance  method, 347 

-- i n i t - -  method, 345, 
347 

object creation, 345 
program, 345 
use program, 346-347 
wi thd raw method, 347 

Base case. See also Recursion 
defined, 403 
Towers of Hanoi 

algorithm, 412 
Base classes, 374. See also 

Superclasses 
BASIC, 17  
Binary digits 

values, 9-10 
values, determining, 10 

Binary files, 227 
Binary numbering system, 9 
Bits 

all set to 0, 11 
all set to 1, 11 
defined, 8 
patterns, 9-10 

Blocks 
blank lines in, 85 
defined, 80 
last line in, 84 
line indentations, 84-85 
nested, 120-121, 134 

boo1 data type, 144 

Boolean expressions 
compound, 138, 143 
defined, 115-1 16 
with logical operators, 138 
w ~ t h  relational operators, 116 
tested by i f  statements, 116 

Boolean functions 
defined, 209 
in testing conditions, 209 
in validation code, 210 

Boolean variables 
defined, 144 
example use, 145 
F a l s e ,  144 
as flags, 145 
T r u e ,  144 

Buffers, 230 
B u t t o n  widgets, 430 
Buttons 

Convert, 434 
Quit, 432-434 
text, 430 
use click, 432 

Bytes 
data storage in, 9 
defined, 8 
for large numbers, 11 

C 
C# programming language, 17  
Calculations 

averages, 55-56 
data type conversion, 58-60 
evaluation rules, 58-59 
formula conversions, 56-58 
grouping with parentheses, 54 
integer division, 52-53 
math expressions, 50-5 1 
math formula conversion, 

56-58 
math operators, 50, 53, 56 
operator precedence, 53-54 
percentages, 51-52 
performing, 50-62 
rounding, 58 
running total, 173-176 

Callback functions 
defined, 430 
as event handlers, 430 
with R a d i o b u t t o n s ,  

447-448 
Calling functions. See also 

Functions 
defined, 81 

examples, 83, 87-90 
illustrated, 82 
In loops, 160-161 

Camelcase variable names, 43-44 
c a r  class, 366 

defined, 375 
~nherrting from Automobile 

class, 377 
In UML d~agram, 383 

c a t  class, 390 
C/C++ programming languages, 17 
CD dr~ves, 6 
CDs (compact d~scs), 6 
c e i l (  ) function, 213 
Ce l lphone  class example 

attributes, 353 
creating, 353-355 
~mport~ng,  354 
methods, 353 
object storage ~n hsts, 356-358 
programs, 353-355 
UML dlagram, 359 

Central processing unlt (CPU) 
defrned, 3 
as electronic dev~ce, 13 
rnstruction set, 14 
mlcroprocessors, 3, 4 
operations, 13  
program lnstructlons, 

understanding, 13-3 4 
Characters 

comment, 39 
escape, 62-63 
11ne contrnuation, 61 
newlrne, 62 
stor~ng, 11-12 
strlng, accessing, 274-278 
string, comparing, 128-129 
strlng, extractrng, 28 1-283 
strrng, val~dat~ng, 289-292 

Check buttons 
defined, 444, 448 
~llustrated, 448 
selection, 448 

Checkbu t ton  class, 448 
Class defrn~trons 

defined, 334 
headers, 336 
organization, 343 
program example, 335 

Class respons~bil~t~es 
defined, 365 
~denttfyrng, 364-367 
problem domain and, 365 



Index 479 

Glasses. See also Inheritance; 
Instances 

actions, 365 
Automobi le ,  375-381 
BankAccount, 345-347 
Car ,  366,375, 377-378 
C a t ,  390 
Ce l lphone ,  353-355 
Checkbu t ton ,  448 
Coin ,  337-343 
Customer,  365 
defined, 333 
definition example, 334 
deslgn techniques, 358-367 
Dog, 389-390 
fmd~ng, 359-364 
I n t V a r ,  445 
Mammal, 388-394 
methods, 336 
names, 335 
objects versus, 333 
Rad ioBut ton ,  444-448 
S e r v i c e Q u o t e ,  366-367 
storlng m modules, 

343-345 
S t r i n g v a r ,  436 
subclass, 374, 377, 358 
superclass, 374, 388 
SUV,  375, 380-381 
Truck,  375,379-380 
UML diagrams, 358-359 

c l o s e  method, 231 
COBOL, 17 
Code reuse 

as function benefit, 79 
modules in, 214 

Coin  class example 
definition, 343 
expression actlons, 339 
ge t- s ideup  method, 337, 

339,352 
my c o i n  object, 339-340 
program example, 337-338, 

341-343 
s i d e u p  attribute, 340, 341, 

352 
t o s s  method, 337, 

341,352 
UML diagram, 359 

Command l~ne  interface. See also 
User interfaces 

defined, 419 
d~fficulty of use, 420 
illustrated, 419 

Comments 
# character, 39 
defined, 39 
end-line, 39-40 
writing resistance, 40 

Comparisons, string 
== operator in, 126 
case-insensitive, 127 
case-sensitive, 127, 287 
character, 128-129 
example, 126 
greater thanlless than, 127 
relational operators, 128 

Compilers, 19 
Compound Boolean operators, 

138, 143 
Computers 

component illustration, 3 
components, 2 
CPU, 3-4 
data storage, 8-13 
ENIAC, 3-4 
function of, 1 
input devices, 6 
main memory, 4-5 
output devices, 6 
secondary storage, 5-6 
use of, 1 
user interfaces, 419 

Concatenating lists, 307 
Condition-controlled loops. See 

also Loops 
beginning of, 154 
conditions tested by, 

153, 155 
defined, 152 
flowchart, 153, 156 
function calls, 160-161 
infinite, 159 
logic, 153 
parts, 153 
as pretest loop, 156-157 
program design with, 

157-159 
w h i l e  statement, 152-161 

Conditions 
series, testing, 134-136 
testing with Boolean 

functions, 209 
Constants, global, 105-107 
Control structures, 113 
Convert button, 434 
c o n v e r t  method, 436 
Cookies, 226 

Copying 
lists, 307-308 
records, 257, 260 

c o s  ( ) function, 213 
Count-controlled loops. See also 

Loops 
defined, 152, 161 
designing, 168-1 70 
examples, 163 -1 64 
first iteration, 162, 166 
f o r  statemeilts, 152, 

161-172 
functioning, 163 
iterations, 162-163 
list generation, 172-173 
r a n g e  f~inction with, 

164-166 
target variables, 163, 

166-168 
user control, 170-172 
uses, 161-162 

Customer class, 365 
Customers, programmer 

interview with, 33 

D 
Data 

appending to existing 
files, 238 

digital, 12 
numeric, writinglreading, 

238-241 
output, 62-69 
reading from files, 227, 

232-235 
writ~ng to files, 226, 

230-232 
Data attributes 

defined, 330 
hiding, 340-343 
manipulation, 332 
private, 355 
public method access, 355 
values, 332 
values, changing, 332 
values, retzeving with 

accessor methods, 355 
Data hiding, 330 
Data storage, 8-13 

characters, 12-12 
music, 13 
numbers, 9-1 1 
numbers, advanced, 12 
pictures, 12 



472 Index 

Data types 
b o o l ,  144 
conversion, 58-60 
defined, 46 
f l o a t ,  46 
i n t ,  46 
numeric, 45-46 
s tr ,  46-47 

Decision structures 
conditional execution, 114 
defined, 114 
dual alternative, 121 
examples, 11 8 
flow chart, 114 
nested, 130-138 
nested blocks, 120-121 
sequence structures with, 

130-131 
single alternative, 114 
string comparison, 126-130 
three actions, 115 

d e g r e e s  ( ) function, 213 
del statement, 306 
Depth of recursion, 402 
Derived classes. See Subclasses 
Dialog boxes. See also Graphical 

user interface (GUI) 
defined, 420 
illustrated, 420 
info, 430, 431 

Digital data, 12 
Direct access files, 228 
Direct recursion, 406 
Disk drives 

defined, 5 
for program storage, 14 

d i s p l a y - l i s t  function, 358 
Divide and conquer, 78 
Division 

integer, 52-53 
truncation, 53 

Division (1) operator, 53 
Document types, 225 
Documentation exceptions, 268 
Dog class, 389-390 
Dot notation, 193 
Double-quotes, 37-38 
Dual alternative decision 

structure 
defined, 121 
flowchart, 122 
writing, 122 

DVD drives, 6 
DVDs (digital versatile discs), 6 

E 
Encapsulation, 330 
End of file 

detection, 243-245 
detection logic, 244 

End users, 49 
End-line comments, 39-40 
e n d s w i t h (  ) method, 288 
ENIAC computer, 3-4 
E n t r y  widgets 

defined, 433 
g e t  method, 434 
program example, 434-436 

Error traps. See Input validation 
loops 

Escape characters 
backslash (\), 62 
defined, 62 
newline (\n), 232-238 
types of, 63 

Event handlers. See Callback 
functions 

Event-driven programs, 421 
Exception handlers, 264 
Exceptions 

A t t r i b u t e E r r o r ,  392 
avoidance example, 263 
defined, 262 
experimentation, 268 
I n d e x E r r o r  , 277-278, 

296,299 
I O E r r o r ,  263,266,267, 

268 
multiple, handling, 266-268 
name, 263 
preventing, 263 
resources, 268 
traceback, 263 
V a l u e E r r o r  , 267,268 
Z e r o D i v i s i o n E r r o r ,  268 

Execution 
i f  statement, 115 
pausing, 90 

Exercises 
classes and OOP 

programming, 370-372 
computers and programming 

introduction, 28 
decision structures, 148-150 
files and exceptions, 272 
functions, 110-1 11 
GUI programming, 

454-455 
inheritance, 396-397 

input, processing, and 
output, 73-75 

repetition structures, 188-1 89 
strings and lists, 326-328 
value-returning functions anc 

modules, 221-223 
e x p  ( ) function, 213 
Exponent ( " * )  operator 

defined, 56 
precedence, 53 
using, 56 

F 
f a c t o r i a l  function, 404-405 
Factorials 

calculating, 403-405 
definition rules, 403 

F a l s e  variable, 144 
Fetch-decode-execute cycle, 15  
Fibonacci numbers, 407 
Fibonacci series, 407-409 

defined, 407-408 
recursive function, 408 

Field widths 
benefits, 67 
minimum, specifying, 66-67 

Fields, 250 
File objects 

defined, 228 
methods, 230 
variable name reference, 229 

Filename extensions, 228 
Files 

access methods, 227-228 
appending data to, 238 
binary, 227 
closing, 227, 230 
cooltie, 226 
direct access, 228 
document, 225 
end of, detecting, 243-245 
game data, 225-226 
image, 225 
input, 226 
lists and, 317-320 
with loops, reading, 243-245 
modes, 229 
opening, 227,229-230 
output, 226 
processing, 227 
processing with loops, 

242-249 
reading data from, 227, 

232-235 



Index 473 

sequential access, 227-228 
software packages storing 

data in, 225-226 
spreadsheet, 225 
temporary, 257, 260 
text, 227 
types of, 227 
use steps, 227 
working with, 247-249 
writing data to, 226, 

230-232 
f i n d  ( ) method, 288 
Flags, 145 
Flash drives, 6 
Flash memory, ,6 
f l o a t  ( ) function, 59-60, 

240,267 
f l o a t  data type. See also Data 

types 
defined, 46 
in mixed-type expressions, 59 
operations on, 58 

Floating-point numbers, 64 
f l o o r  ( ) function, 213 
Floppy disk drives, 5 
Flowcharts 

decision structure, 114 
defined, 34 
diamond symbol, 114 
dual alternative decision 

structure, 122 
function, 85-86 
function call in loops, 161 
function call symbol, 85 
illustrated, 35, 86 
input symbols, 34 
input validation loop, 180 
nested decision structure, 132 
nested loop, 185 
output symbols, 34 
processing symbols, 34 
running total calculation, 173 
sequence structures nested in 

decision structure, 131 
sequence structures with 

decision structure, 130 
symbols, 34 
terminal symbols, 34 
w h i l e  loops, 153 

f o r  loops 
defined, 161 
designing, 168-170 
examples, 163-164 
first iteration, 162, 166 

functioning, 163 
iterating over lists with, 296 
iterating through lists 

with, 318 
iterations, 162-163 
list generation, 172-173 
r a n g e  function with, 

164-166 
to read lines, 245-246 
for string character access, 

274-276 
target variables, 163, 

166-168 
user control, 170-172 
uses, 161-162 

f o r  statements 
in count-controlled loops, 152 
designing count-controlled 

loops with, 168-170 
execution, 162 
general format, 162 

Formatting 
integers, 67-69 
multiple values, 66 
numbers, 64-69 
strings, 67-69 

Formatting specifiers 
defined, 64-65 
minimum field width, 66-67 
multiple values, 66 
same number as values, 66 
single value, 65 

FORTRAN, 17  
Frame 

defined, 427, 428 
organizing widgets with, 

427-430 
pack method, 429 
placing widgets in, 428 
program example, 428-429 

Frames, widget organization 
with, 441 

Function calls 
in loops, 160-161 
symbol, 85 

Function definitions 
block, 80 
defined, 79 
example, 87-88 
function header, 80 
general format, 80 
multiple, 82 
writing, 80-81 

Function headers, 80 

Functions 
aces(), 213 
a s i n ( ) ,  213 
a t a n ( ) ,  213 
benefits, 78-79 
Boolean, 209-210 
built-in, 192 
callback, 430 
calling, 81-84, 101 
c e i l (  ) , 213 
c o s  ( ) , 213 
defined, 48, 77 
d e g r e e s o ,  213 
d i s p l a y - l i s t ,  358 
for divide and conquer, 78 
exP(  1, 213 
f a c t o r i a l ,  404-405 
f l o a t  ( ) , 59-60,240,267 
f l o o r ( ) ,  213 
flowcharts, 85-86 
global variables, 105 
h y p o t ( ) ,  213 
indentation, 84-85 
i n p u t ,  48-49 
i n t  ( ) , 60,240,241 
introduction to, 77-79 
i s i n s t a n c e ,  391-394 
l e n ,  278,297 
library, 192-193 
local variables, 91-93 
l o g l o ( ) ,  213 
l o g (  ) 1 213 
make- l i s t ,  358 
math module, 211-212,213 
max, 306-307 
message,  400-401 
method, 230 
min, 306-307,315 
modularizing with, 205-208 
names, 80 
open,  229-230 
passing arguments to, 93-103 
program control transfer to, 84 
program design for using, 

85-90 
r a d i a n s (  ) , 213 
r a n d i n t ,  193-195,335 
random, 199 
r a n d r a n g e ,  198-199 
r a n g e ,  164-166 
raw i n p u t ,  48,49 
recursive, 399-402 
rename, 258 
returning lists from, 312-314 



474 Index 

Functions (continued) 
returns, 81, 84 
showinfo ,  430,432 
simple, 191 
s i n (  ) , 213 
s q r t ,  212,213 
standard library of, 192 
storing in modules, 214-218 
s t r ,  238-239 
sum-range, 406-407 
t a n ( ) ,  213 
un i fo rm,  199 
value-returning, 191-21 1 

C 
Game data files, 225-226 
Generalization, 373 
GIGO, 179 
Global constants 

defined, 105 
using, 105-107 
values, 105 

g l o b a l  key word, 105 
Global variables. See also 

Variables 
access, 103 
defined, 103 
drawbaclcs, 104-105 
examples, 103-104 
functions using, 105 
program understanding 

and, 105 
use, restricting, 104 
using, 105-107 
values, assigning, 104 

Graphical user interface (GUI). 
See also GUI programs 

defined, 419, 420 
dialog boxes, 420 
as event-driven, 421 
graphical elements, 420 
libraries, 421 
programming, 419-450 

Greatest cominon divisor (GCD) 
determination, 409 
program example, 409-410 

Grouping, with parentheses, 54 
GUI programs. See also Graphical 

user interface (GUI) 
buttons, 430-433 
check buttons, 448-450 
creating, 440-444 
creating with T k i n t e r  

module, 421-424 

as event-driven, 421 
exiting, 422 
illustrated, 421 
info dialog boxes, 430-433 
input, 433-436 
main window display, 425 
output fields, 436-440 
radio buttons, 444-448 
text display, 424-427 
widgets, 422 

H 
Hardware, 2 
Hiding attributes, 340-343 
Hierarchy charts 

defined, 87  
i f  -else statements, 124 
illustrated, 87, 88 
passing arguments to 

functions, 96 
High-level languages, 16-1 7 
h y p o t  ( ) function, 213 

I 
IDLE, 459-466 

automatic indentation, 
463-464 

color coding, 463 
defined, 23, 459 
File menu, 462 
illustrated, 23 
installation, 459 
introduction to, 459-466 
resources, 466 
running, 23 
running programs from, 

465-466 
saving programs, 464 
shell window, 460 
starting, 459 
Syntax error dialog box, 466 
text editing window, 462 
text editor, 23 
writing Python programs in, 

461-462 
i f  statement 

with and operator, 139 
Boolean expressions, 

115-116 
defined, 113 
execution, 115 
general format, 115 
with n o t  operator, 140 
with o r  operator, 139 

relational operators, 
116-117 

uses, 115 
i f  - e l i f  -else statement. See 

also Nested decision 
structures 

alignment, 137 
defined, 136 
example, 137 
general format, 136 
indentation, 137 
logic, 137 

i f  -else statements 
clause alignment, 123, 134 
condition, testing, 122 
conditional execution, 122 
defined, 121 
general format, 122 
hierarchy chart, 124 
indentation, 123-125 
nested, 133-134, 137, 141 
tests, 133 
using, 123-125 

i f - t h e n  statements, 119-120 
Images 

as files, 225 
storage, 12 

i m p o r t  statements 
defined, 192 
in importing modules, 215 
writing, 193 

i n  operator 
finding list items with, 

297-298 
, testing strings with, 283 

Indentation 
automatic, 85 
in blocks, 84 
as four spaces, 85 
IDLE editor, 463-464 
i f - e l i f - e l s e  

statement, 137 
i f  -else statement, 

123-125 
line, methods, 85 

i n d e x  ( ) method 
calling, 303-304 
defined, 301 
passing arguments to, 302 
program example, 302-303 

I n d e x E r r o r  exceptions 
defined, 277 
examples, 277-278 
with lists, 296, 299 



Index 475 

Indexes 
defined, 276 
invalid, 280 
list, 296-297 
negative, 296 
negative numbers in, 277, 280 
string, 276 
string length as, 280 
use examples, 277 

Indirect recursion, 406 
Infinite loops, 159 
Info dialog boxes. See also 

Dialog boxes 
defined, 430 
illustrated, 431, 433, 436 

Inheritance. See also Classes 
defined, 373 
"is a" relationships and, 

374-382 
subclass, 374 
superclass, 374 
in UML diagrams, 382-387 
using, 383-387 

Initializer methods, 336 

-- i n i t - -  method, 336,345, 
347,376,378 

Input 
defined, 6 
flowchart symbols, 34 
program, 35-36 
reading from keyboard, 

48-50 
Input devices, 6 
Input files, 226 
i n p u t  function 

defined, 48 
general format, 48 
reading numbers with, 48-49 
sample use, 48 

Input validation, 179, 180 
Input validation loops 

defined, 179 
error message display, 180 
as error trap, 181 
flowchart, 180 
logic, 180 
priming read, 180 
writing, 181-3.84 

i n s e r t  ( ) method 
defined, 301 
passing arguments to, 304 
program example, 304 

Instances. See also Classes 
attributes, 350 

creation in memory, 336 
defined, 333 
determining, 392 
working with, 350-352 

i n t  ( ) function, 60 
defined, 240 
r e a d l i n e  method 

argument, 241 
i n t  data type 

defined, 46 
in mixed-type expressions, 59 
operations on, 58 

Integer division 
defined, 52 
f l o a t  function and, 60 
truncation, 53 

Integers, 45 
formatting, 67-69 
list, 295 
string conversion to, 241 

Integrated development 
environment, 23 

Interactive mode 
defined, 21 
error messages, 22 
interpreter start in, 21 
using, 21-22 

Interpreters 
defined, 19 
Python, 20, 21 

I n t v a r  class, 445, 448 
IOEr ro r  exception, 263, 266, 

267,268 
IPO charts 

defined, 204 
descriptions, 205 
illustrated, 204 
use decision, 205 

"Is a" relationship 
defined, 374 
examples, 374 
inheritance and, 374-382 

i s a l n u m (  ) method, 285 
i s a l p h a (  ) method, 285 
i s d i g i t  ( ) method, 285 
i s  i n s t a n c e  function, 

391-394 
calling, 394 
general format, 392 
in instance determination, 392 

i s l o w e r  ( ) method, 285 
i s s p a c e  ( ) method, 285 
i s u p p e r  ( ) method, 285 
Iterating over lists, 296 

Iterating over strings 
with f o r  loop, 274-276 
general format, 274 
illustrated, 275 
program example, 276 

J 
Java, 17  
JavaScript, 17 

K 
Key words 

defined, 18 
function names and, 80 
variable names and, 43 

Keyboard, reading input from, 
48-50 

Keyword arguments. See also 
Arguments 

arguments passed to, 101 
defined, 101 
example use, 101-102 
mixing with positional 

arguments, 103 
order, 102 

L 
L a b e l  widget 

creating, 424 
defined, 424 
pack method, 425,427 
program examples, 424-427 
S t r i n g v a r  object with, 

436-440 
l e n  function, 278 

defined, 278 
with lists, 297 

Libraries, 421 
Library functions 

as black boxes, 192 
built-in, 192 
defined, 192 
modules, 192 
r a n d i n t ,  193-195 
random, 199 
for random number 

generation, 193 
r a n d r a n g e ,  198-199 
un i fo rm,  199 

Line continuation character (I), 63 
Lists, 294-322 

concatenating, 307 
copying, 307-308 
creating with repetition ( " )  

function, 295 



476 Index 

Lists (continued) 
creation example, 294 
defined, 294 
displaying, 295 
as dynamic data 

structures, 294 
files and, 317-320 
generating, highest to 

lowest, 172 
generating with r a n g e  

function, 295 
indexing, 296-297 
integers, 295 
item range, summing, 406-407 
items, adding, 300-302 
items, determining, 302-304 
items, finding, 297-298 
items, in math expression, 

308-309 
items, inserting, 304 
items, rearranging, 304-305 
items, removing, 305-306 
items, reversing order, 306 
iterating over, 296 
l e n  function with, 297 
methods, 300-306 
as mutable, 294, 298-300 
negative indexes with, 296 
passing as arguments, 

311-312 
processing, 308-309 
processing example, 314-3 17 
returning from functions, 

312-314 
size, 310 
slicing, 297 
storing objects in, 356-358 
string, 295 
values, averaging, 3 10-31 1 
values, totaling, 310 
working with, 294, 317-320 

Literals 
numeric, 46 
string, 37-38 

Loan qualifier example programs, 
141-142 

Local variables. See also 
Functions; Variables 

creating, 9 1 
defined, 9 1 
errors, 9 1 
hidden, 92 
scope and, 9 1-93 
use example, 92-93 

l o g 1  0 ( ) function, 213 
l o g  ( ) function, 213 
Logic 

end of file detection, 244 
i f  - e l i f  -else statement, 

137 
input validation loops, 180 
mainline, 82 
running total calculation, 173 
w h i l e  loop, 253 

Logic errors, 32 
Logical operators. See also 

Operators 
and ,  138,139 
compound Boolean 

expressions using, 138 
defined, 138 
n o t ,  138, 139-140 
numeric ranges with, 143 
o r ,  138,139-140 

Long statements, breaking, 
61-62 

Loops 
condition-controlled, 

152-161 
count-controlled, 152 
defined, 152 
in file processing, 242-249 
f o r ,  161-172,245-246 
infinite, 159 
input validation, 179-184 
nested, 184-186 
pretest, 156-157 
recursion versus, 413 
sentinels and, 176-179 
validation, 210 
w h i l e ,  152-161 

lower  ( ) method, 286,287 
Low-level languages, 16 
l s t r i p  ( ) method, 286 

Wls 
Machine language, 13, 14, 15 
Main memory 

defined, 4 
illustrated, 5 
programs in, 14-15 
as random-access memory 

(RAM), 5 
Mainline logic, 82 
make- l i s t  function, 358 
Mammal class 

code, 388-389 

-- i n i t - -  method, 389 

make - sound method, 
389, 391 

show- species method, 389 
Math expressions 

assignment statements, 50-51 
defined, 50 
example, 50 
mixed-type, 59 
operands, 50 
using list elements in, 308-309 
value-returning functions 

in, 202 
variables, 50 

math module 
contents, 21 1 
e variable, 213 
functions, 21 1-212, 213 
p i  variable, 213 

Math operators. See also Operators 
defined, 50 
precedence, 53-54 

max function, 306-307 
Memory 

flash, 6 
main, 4-5 
secondary storage, 5-6 
volatile, 5 

Memory sticks, 6 
Menu-driven programs, 21 8 
message  function 

calls, 401 
main function calling, 401 
string display, 400 

Methods 
, accessor, 355 

a p p e n d ( ) ,  300-302 
call format, 284 
class, 336 
c l o s e ,  231 
c o n v e r t ,  436 
defined, 230, 330 
e n d w i t h ( ) ,  288 
f i n d ( ) ,  288 
i n d e x  ( ) , 301,302-304 
initializer, 336 

-- i n i t  --, 336,345, 
347,376,378 

i n s e r t  ( ) , 301,304 
i s a l n u m ( ) ,  285 
i s a l p h a ( ) ,  285 
i s d i g i t ( ) ,  285 
i s l o w e r ( ) ,  285 
i s s p a c e ( ) ,  285 
i s u p p e r ( ) ,  285 



Index 477 

list, 300-,306 
lower  ( ) , 286,287 
I s t r i p ( ) ,  286 
modification, 286-287 
mutator, 355 
outside code interaction, 331 
overriding, 3 8 8 
private, 332 
public, 332 
q u i t ,  432 
r e a d ,  232,233 
r e a d l i n e ,  233-234,236, 

240,241,244 
readlines, 318 
remove( )., 301,305-306 
r e p l a c e  ( ) , 288,289 
r e v e r s e  ( ) , 301,306 
r s t r i p ,  237,286 
searching and replacing, 

287-289 
s e l f  parameter, 350 
s o r t  ( ) , 301,304-305 
s p l i t ( ) ,  320-321 
s t a r t s w i t h o ,  288 
string, 284-289 
s t r i p ( ) ,  286 

-- str--, 347-350 
subclass, 388 
superclass, 3 8 8 
testing, 284-286 
u p p e r ( ) ,  286-287 
write, 230 
w r i t e l i n e s o ,  317 

Microprocessors, 3, 4 
companies, 14 
defined, 3 
illustrated, 14 

min function, 306-307, 315 
Minimum field .widths 

applying, 68 
defined, 66 
number display and, 67 
specifying, 66-67 

Mixed-type expressions, 59 
Mnemonics, 16 
Modification methods. See also 

Methods 
defined, 286 
example use, 287 
list of, 286 

Modularization, 214 
Modules 

in code reuse, 214 
defined, 192, 214 

importing, 215, 343 
math,  211-214 
names, 215 
o s ,  258 
random, 193 
storing classes in, 343-345 
storing functions in, 214-218 
T k i n t e r ,  421-424 
tkMessageBox, 430-433 

Multiple items 
displaying with + operator, 

63-64 
displaying with p r i n t  

statement, 44 
Multiplication ( " )  operator, 53 
Music storage, 13 
Mutator methods, 355 

Pa 
Negative indexes, 296 
Nested blocks. See also Blocks; 

Decision structures 
defined, 120 
illustrated, 121 

Nested decision structures 
defined, 130 
flowchart, 132 
grade determination 

example, 135 
identification, 133 
multiple, 134-136 
sequence structures in, 13 1 

Nested i f  -else statements 
clause alignment, 133-134 
example use, 141 
long series of, 137 

Nested loops. See also Loops 
defined, 184 
example, 184-1 85 
flowchart, 185 
intermost loop, 185, 186 
iteration total, 186 
outer loop, 186 

Newline (h) character 
complications, 236 
concatenating to strings, 

235-236 
defined, 62, 232 
functions, 232 
purpose inside files, 236 
r e a d l i n e  method and, 233 
r s t r i p  method and, 237 
stripping from strings, 

236-238 

n o t  i n  operator 
finding list items with, 

297-298 
testing strings with, 283 

n o t  operator 
defined, 138 
truth table, 140 
use example, 140 

Nouns 
elimination, 361-363 
identical meanings, 361-362 
identifying, 360-361 
list, refining, 361-364 
non-essential item 

representation, 362 
object-represented, 363 
value-represented, 363-364 

Numbers 
advanced storage, 12 
data types, 45-46 
factorial, calculating, 403-405 
floating-point, 64 
formatting, 64-69 
integers, 45 
negative, in indexes, 277, 280 
nonnegative, factorial, 403 
random, 192-199 
ranges, changing, 143 
reading with i n p u t  

function, 48-49 
real, 45 
storage, 9-1 1 

Numeric data 
reading, 240-241 
writing, 238-240 

Numeric literals, 46 

0 
Object-oriented programming 

(OOP) 
data hiding, 330 
defined, 329 
encapsulation, 330 
premise, 330 

Objects. See also Methods 
classes varsus, 333 
data attributes, 330, 

340-343 
defined, 330 
elements, 330 
everyday example, 331-332 
reusability, 331 
state, 347 
storing in lists, 356-358 



478 Index 

Open function 
call example, 229-230 
defined, 229 
general format, 229 

Operands, 50 
Operation systems, 6 
Operators 

addition (+), 53, 307 
and ,  138-140 
assignment, 175-176 
defined, 18 
division (I), 53 
i n ,  283,297-298 
logical, 138-144 
math, 50 
multiplication ("), 53 
n o t ,  138,140 
n o t  i n ,  283,298 
o r ,  138-140 
precedence, 53-54 
relational, 116, 128 
remainder (%), 53, 56 
repetition ("), 292-293 
string format, 64, 65 
subtraction (- ), 53 

o r  operator 
defined, 138 
short-circuit evaluation, 140 
truth table, 139 
use example, 139 

o s  module, 258 
Output 

data, 62-69 
defined, 6 
devices, 6 
displaying, 36-39 
flowchart symbols, 34 
program, 35, 36 

Output files 
closing, 231 
defined, 226 
opening, 23 1 

P 
Parameter lists, 98 
Parameters 

changes, 99-101 
defined, 93, 94 
example, 94 
passing by position to, 98 
scope, 95 

Parentheses (()), 54 
Pascal, 17  
Pass by value, 101 

Passing arguments. See also 
Arguments 

defined, 93 
example, 96-97 
multiple, 97-99 
parameter variables, 94-95 
by position, 98 
by value, 101 

Passing lists, 31 1-312 
Pausing program execution, 90 
Percentages, calculating, 51-52 
Pixels, 12 
Polymorphism 

behavior elements, 388 
defined, 388 
program design flexibility, 391 

Precedence, operator, 53-54 
Pretest loops 

defined, 156 
w h i l e  loop as, 156-157 

Priming read, 180, 244 
p r i n t  statement 

example, 36 
in list display, 295 
in multiple item display, 44 
newline suppression, 62 
output display with, 36-39 
string literals, 37-38 

Private methods, 332 
Problem domain 

class responsibilities and, 365 
defined, 360 
description, 360 
example, 360 
noun identification, 360-361 
noun list, refining, 361-364 

Problem solving with recursion, 
402-406 

defined, 402 
number factorial calculation, 

403-405 
overhead, 402 
repetitive, 402 

Procedural programming, 329 
Procedures 

creation, 330 
operation, 329 

Process, program, 35, 36 
Processing symbols, 34 
Program design, 3 1-35 

flowcharts, 34-35, 85-86 
for function use, 85-90 
hierarchy charts, 87 
polymorphism and, 391 

process, 32 
pseudocode, 34 
steps determination, 33-34 
top-down, 86-87 
with w h i l e  loops, 157-159 

Program development cycle 
defined, 31 
elements, 32 
illustrated, 31 

Programmers 
customer interview, 33 
defined, 1 
task breakdown, 33-34 

Programming 
object-oriented, 329, 330-332 
procedural, 329-330 

Programming languages. See also 
Python 

Ada, 17  
assembly, 15-16 
BASIC, 17 
C#, 17 
C/C++, 17 
COBOL, 17 
compilerslinterpreters, 18-20 
FORTRAN, 17 
high-level, 16-17 
Java, 17 
JavaScript, 17 
ltey wordslreserved words, 18 
low-level, 16 
operators, 18 
Pascal, 17  
Ruby, 17 
source code, 20 
statements, 18 
syntax, 18 
Visual Basic, 17  

Programs. See also Python 
programs 

defined, 1 
event-driven, 421 
exceptions, 262-268 
execution, pausing, 90 
functioning of, 13-20 
GUI, 421 
image editing, 2 
input, 35-36 
line numbers, 37 
in main memory, 14-15 
mainline logic, 82 
menu-driven, 21 8 
output, 35, 36 
process, 35, 36 



storage, 14 
task, steps, 33-34 
task, understanding, 32-33 
testing, 32 
three-step process, 36 
utility, 7 
word processing, 2 

Pseudocode, 34 
Public methods. See also Methods 

attribute access, 355 
defined, 332 

Python 2.5, 457 
Python 

defined, 17  
directory,. adding to P a t h  

variable, 458 
documentation, 457 
IDLE, 23-24 
installing, 21, 457 
interactive mode, 21-22 
key words, 18 
operators, 18 
quitting, 22 
script mode, 21, 22-23 
Shell window, 460, 461, 466 
using, 20-24 
Windows installer, 457 

Python interpreter, 20, 21, 457 
interactive mode, 459 
multiline statement 

execution, 461 
statements executed by, 460 
wait prompt (>>>), 460 

Python programs 
defined, 21  
naming, 23 
running, 23, 465-466 
saving, 23, 464 
writing, 22 

Q 
Quit button, 432-433, 434 
q u i t  method, 432 
Quote marks, for string literals, 

37-38 

R 
r a d i a n s  ( ) function, 213 
Radio buttons, 444 
R a d i o b u t t o n  widgets 

callback functions with, 
447-448 

clicking, 445 
selection, 444 -445 

r a n d i n t  function 
call example, 193 
defined, 193 
integer value return, 197 
program example, 194-195 
in random number 

generation, 335 
values returned by, 194 

Random access files. See Direct 
access files 

random function, 199 
random module, 193 
Random numbers 

displaying, 195 
generating, 192-199 
library functions, 193 
to represent other values, 

197-198 
uses, 192-193 
using, 196-197 

Random-access memory (RAM), 5 
r a n d r a n g e  function 

defined, 198 
example uses, 198-199 

r a n g e  function 
arguments passed to, 165 
defined, 164 
with f o r  loop, 164-166 
in list generation, 295 

raw- input function, 48,49 
r e a d  method, 232 
Read position 

advanced to end of file, 235 
advanced to next line, 234 
defined, 234 
initial, 234 

Reading 
data from files, 227, 

232-235 
files with loops, 243-245 
input from keyboard, 48-50 
numbers, 48-49 
numeric data, 240-241 
records, 251 
strings, 49 

r e a d l i n e  method, 233-234, 
236,240,241 

empty string return, 244 
r e a d l i n e s  ( ) method, 318 
Real numbers, 45 
Records 

adding, 253-255 
copying, 260 
defined, 249, 250 

deleting, 260-261 
displaying, 253-255 
modifying, 257-259 
processing, 249-262 
reading, 253 
searching for, 255-257 
writing, 250 

Recursion 
depth of, 402 
direct, 406 
indirect, 406 
introduction to, 399-402 
in number factorial 

calculation, 403-405 
problem solving with, 

402-406 
Recursive algortthms 

designing, 403 
Fibonacci series, 407-409 
GCD, 409-410 
looping versus, 41 3 
summing list elements range, 

406-407 
Towers of Hanoi, 410-423 

Recursive case, 403 
Recursive functions 

controlling, 400,402 
defined, 399 
Fibonacci series 

calculation, 408 
functioning of, 403 
program example, 399-400 

Relational operators 
Boolean expressions with, 116 
defined, 1 16 
list of, 116 
in string comparisons, 128 

Remainder (%) operator. See 
also Operators 

defined, 56 
precedence, 53 
using, 56 

remove ( ) method, 301 
rename function, 258 
Repetition operator (" )  

defined,292 
in list creation, 295 
program example, 292-293 
use example, 292 

Repetition structures. See also 
Loops 

defined, 15 1 
example, 151-152 
introduction to, 151-152 



480 Index 

r e p l a c e  ( ) method, 288,289 
Reserved words, 18 
r e t u r n  statement. See also 

Value-returning functions 
defined, 200 
using, 202 
values, 21 1 

R e v e r s e  ( ) method 
defined, 301 
use example, 306 

Review questions 
classes and OOP 

programming, 367-370 
computers and programming 

introduction, 24-27 
decision structures, 145-148 
files and exceptions, 268-271 
functions, 107-1 10 
GUI programming, 451-453 
inheritance, 394-396 
input, processing, and 

output, 69-73 
repetition structures, 186-1 8 8 
strings and lists, 323-326 
value-returning functions and 

modules, 2 18-220 
Rounding, dollar amounts, 58 
r s t r i p  ( ) method, 237,286 
Ruby programming language, 17  
Running totals 

accumulator, 173 
calculating, 173-176 
defined, 173 
example, 174 
logic, 173 

5 
Samples, 13 
Scope. See also Variables 

defined, 91 
local variable, 91-93 
parameter, 95 

Script mode 
defined, 21 
using, 22-23 

Scripts, 21 
Searching 

methods, 287-289 
for records, 255-257 

Secondary storage 
defined, 5 
types of, 5-6 

Selection structures. See Decision 
structures 

s e l f  parameter, 350 
Sentinels 

defined, 176, 177 
using, 177-179 
values, 177 

Separators, 321 
Sequences 

arrays, 295 
with decision structure, 130 
defined, 113, 273 
items in, 273 
lists, 294-322 
strings, 273-294 
types of, 273 

Sequential access files. See also 
Files 

defined, 227-228 
record modification, 257 
working with, 228 

S e r v i c e Q u o t e  class, 366-367 
Short-circuit evaluation, 140 
showinf  o function, 430, 432 
s i n  ( ) function, 213 
Single alternative decision 

structure, 114 
Single-quotes, 38 
Slices 

defined, 279 
examples, 280 
expression format for, 279 
list, 297 

Software. See also Programs 
application, 7 
defined, 1 
developers. See Programmers 
requirement, 33 
system, 6-7 

Software development tools, 7 
s o r t  ( ) method 

defined, 301 
use examples, 304-305 

Source code 
defined, 20 
functions and, 79 
writing, 32 

Specialization, 373-374 
s p l i t  ( ) method 

calling, 321 
defined, 320 
program examples, 320-322 

Splitting strings 
program examples, 320-322 
with s p l i t  method, 

320-322 

Spreadsheets, as files, 225 
s q r t  function, 212, 213 
Standard library functions, 192 
s t a r t s w i t h (  ) method, 288 
Statements 

converting math formulas to, 
56-58 

defined, 18 
d e l ,  306 
f o r ,  152 
i f ,  113-121 
i f - e l i f - e l s e ,  136-138 
i f - e l s e ,  121-125 
i f - t h e n ,  119-120 
i m p o r t ,  192,193 
line continuation character 

(I), 61 
long, breaking, 61 
r e t u r n ,  200,202 
saving, 22 
t r y / e x c e p t ,  264-265 
w h i l e ,  152 

Step values, 165 
str  data type, 46 
str  function, 238-239 
String concatenation 

+ operator, 63 
defined, 63-64 
uses, 64 

String format operator 
defined, 64 
formatting one value with, 65 
formatting several values 

with, 66 
, use example, 65 

String literals 
apostrophes, 38 
defined, 37 
examples, 37, 38 
quote marks, 37-38 
single-quotes, 38 

Strings 
character access, 274-278 
character copies, getting, 277 
characters, extracting, 

281-283 
characters, validating, 

289-292 
comparing, 126-130 
concatenating newlines to, 

235-236 
defined, 37 
formatting, 67-69 
as immutable, 278-279 



Index 481 

indexing, 276-278 
iterating over with f o r  loop, 

274-276 
list, 295 
methods, 273, 284-289 
reading, 274 
reading with raw- input 

function, 49 
readinglstripping newline 

from, 236-238 
returning, 208-209 
slicing, 279-280 
splitting, 320-322 
storing with s t r  data type, 

46-42 
testing, 283 
variable assignment, 46-47 
working with, 273-294 
writing, 274 

S t r i n g v a r  object 
defined, 436 
with L a b e l  widget, 436-440 
reference storage, 440 
s e t  method, 440 

S t r i p  ( ) method, 286 
--str -- method, 347-350 

automatic calling, 350 
defined, 348 
program example, 348-350 

Structure charts. See Hierarchy 
charts 

Subclasses 
defined, 374 
inheriting from classes, 377 
method overriding, 3 8 8 
methods, 388 

Substrings 
defined, 279 
examples, 280 
expression format for, 279 

Subtraction (- ) operator, 53 
sum-range function, 406-407 
Superclasses 

defined, 374 
methods, 388 

SUV class 
code, 380 
defined, 375 
get- pas s-cap method, 

381 

-- i n i t  -- method, 380 
s e t p a s s- c a p  method, 

381 
in UML diagram, 383 

Syntax 
defined, 18 
rules, 20 

Syntax errors 
correcting, 32 
defined, 20 

System software, 6-7 

T 
t a n  ( ) function, 213 
Target variables 

defined, 163 
inside loops, 166-168 
purpose, 166 

Temporary files 
copying records to, 

257,260 
creating, 257 
renaming, 257, 260 

Terminal symbols, 34 
Testing 

functions and, 79 
string methods, 284-286 
strings, 283 

Testing programs, 32 
Text 

button, 430 
displaying in window, 

424-427 
editor, 23 
files, 227 

Tk library, 421 
T k i n t e r  module. See also GUT 

programs 
Checkbut ton class, 448 
defined, 421 
in GUI program creation, 

421-424 
IDLE use, 422 
importing, 423 
I n t v a r ,  445,448 
mainloop function, 

424,425 
program examples, 422-424 
program use, 422 
Radiobut ton class, 444-448 
S t r i n g v a r  class, 436 
widgets, 422 

TkMessageBox module, 
430-433 

Top-down design. See also 
Program design 

defined, 86 
process, 86-87 

Totals 
list value, 310 
running, 173-176 

Towers of Hanoi 
algorithm summary, 

411-412 
defined, 410 
game play, 410-411 
overall solution, 41 1 
peg-moving steps, 41 1 
pegs and discs, 410 
program example, 

412-413 
Tracebacks, 263 
Triple-quotes, 38 
Truck class 

code, 379 
defined, 375 
g e t  - d r i v e  method, 380 

-- i n i t  -- method, 380 
s e t - d r i v e  method, 380 
in UML diagram, 383 

True  variable, 144 
Truth tables 

and operator, 139 
n o t  operator, 140 
o r  operator, 139 

t r y / e x c e p t  statements 
defined, 264 
event sequence, 266 
e x c e p t  clauses, 265, 268 
execution, 265 
general format, 264 
t r y  block, 264-265 
use exampie, 265-266 

U 
UML diagrams 

c a r  class, 366 
Ce l lphone  class, 359 
Coin class, 359 
Customer ciass, 365 
defined, 358 
examples, 359 
general layout for classes, 

359 9 
inheritance in, 382-383 
S e r v i c e Q u o t e  class, 367 

Unicode, 12 
Unified Modeling Language. See 

UML diagrams 
Uniform function, 199 
upper  ( ) method, 286,287 
USB drives, 5-6 



482 Index 

User interfaces 
command line, 419-420 
defined, 419 
graphical (GUI), 419-450 

Users, 49 
Utility programs, 7 

V 
Validation code, 210 
Validation loops, 210 
V a l u e E r r o r  exception, 

267,268 
Value-returning functions 

benefits, 202 
defined, 191 
example, 200 
in mathematical 

expressions, 202 
modularizing with, 205-208 
parts of, 200 
r e t u r n  statement, 200, 202 
returning Boolean values, 

209-210 
returning multiple 

values, 212 
returning strings, 208-209 
as simple functions, 191 
using, 202-204 
values, 191, 200 
writing, 200-211 

Values 
Boolean, returning, 209-210 
different per execution, 176 
long list, processing, 177 
multiple, returning, 21 1 
passing by, 101 
random number to represent, 

197-198 
r e t u r n  statement, 211 
returned by r a n d i n t ,  194 
sentinel, 177 
step, 165 

value-returning functions, 
191,200 

Variables 
accumulator, 173, 266 
Boolean, 144-145 
camelcase, 43-44 
creating inside functions, 103 
creating outside functions, 103 
creating with assignment 

statements, 40-42 
defined, 40 
errors, 42 
examples, 40, 41, 42 
first letter, 43 
global, 103-105 
key words and, 43 
local, 91-93 
in math expressions, 50 
names, sample, 43, 44 
names, selecting, 43 
naming rules, 43-44 
parameter, 93-94 
P r i n t  statement and, 44 
program use, 40 
reassignment, 45 
scope, 91 
string assignment, 46-47 
target, 163 
upper/lowercase letters, 42 
use warning, 42 
value representation, 40 

Verbs, in function names, 80 
Visual Basic, 17  

w 
w h i l e  loops, 253 

beginning of, 154 
condition tested by, 153, 155 
defined, 152 
flowchart, 153, 156 
function calls, 160-161 
infinite, 159 

logic, 153 
parts, 153 
as pretest loop, 156-157 
program design with, 

157-159 
w h i l e  statement, in condition- 

controlled loops, 152 
'iiidgets 

arrangement of, 430 
B u t t o n ,  430-433 
defined, 422 
E n t r y ,  433-436 
Frames, 428 
L a b e l ,  424-427 
organizing with Frames,  

427-430,441 
q u i t  method, 432 
R a d i o b u t t o n ,  444-448 
root, 424, 432 
T k i n t e r ,  422 

Windows Explorer, 228 
Windows Vista, 458 
Windows XP, 458 
w r i t e l i n e s  ( ) method, 317 
Writing 

comments, 40 
data to files, 226, 230-232 
dual alternative decision 

structures, 122 
function definitions, 

80-8 1 
input validation loops, 

181-184 
numeric data, 238-240 
records, 250 
source code, 32 
value-returning functions, 

200-201 

z 
Z e r o D i v i s i o n E r r o r  

exception, 268 







PLEASE SEE REVERSE SIDE FOR INSTRUCTIONS TO OPEN 






